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Motivation
e ncompatibility between GR and QFT:
1
Ry — 5 R = (Tw)
lhs: classical Einstein tensor, rhs: ev of an operator

" hint towards quantized space-time

®

natural limit in experimental length resolution:
better length resolution requires higher energy,
energy required for resolution of the Planck length
has a Schwarzschild radius of the Planck length

Gh
Az, N 3 ~ 10~ 33cm




Groenewold-Moyal space

e assume non-commuting space-time coordinates:
> TV

2+, 2] = i0"", = leads to uncertainty relation

1
Azt AxY > 5]9‘“’\ ~ ()\p)2

e exists isomorphism mapping between NC algebra
and commutative one, e.g. Weyl map

wW:A— A, zt— 3
e definition of the Groenewold-Moyal x-product:
f(@)* g(@) = 37" f(2)g(y)| _ # g(x) * f(@)

e Invariance under cyclic permutations of the integral

/d4xf(x) *x g(x) % h(x) = /d4xh(a:) * f(x) *x g(x)

=
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QFT on deformed space-time

For a field theory this means:
e Interaction vertices gain phases, whereas
propagators remain unchanged,

e and some Feynman integrals ("non-planar
diagrams”) have phases which act as UV-regulators

1 4, ewop m2 1
- k — K 2(0p)2? ) ~ .m?In(0p)?
4 /d K2+ m2 |\ (6p)? (V2 @pP) Gpy e InOp)

= origin of the UV/IR mixing problem

O 0O
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UV/IR mixing

“naive” models such as

See = /d4x % (0H ¢ x Opp + m P * @) + % qb*‘l} ,

1
Ser = —Z/d‘l:cFW*FW + ...

with Fo.=0,A —0,A4,—1ig|lA,* A

lead to IR singular self-energy graphs

HWIR (p) ( (911?) 2 HWIR (p) (9(](9225 21)02) :

Graphs with these insertions are IR divergent!
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Previous successes

So far, there are two models for scalar field theories
where the UV/IR mixing problem could be solved by
adding additional terms in the action:

ethe Grosse-Wulkenhaar model (2003), where the
¢* theory was supplemented by a (translation-
invariance breaking) oscillator term ( =~ {z * ¢}** ),

eand a translation-invariant model by Gurau, Magnen,
Rivasseau and Tanasa (2008), where a ¢(—p) 52 ¢(»)
term was added.

Both models could be proved to be
renormalizable to all orders.
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Scalar NCQFT

Action introduced by Gurau et. al. In
Commun.Math.Phys. 287 (2009) 275:

2
S = /d4:v B (3”¢*au¢+m2¢*¢—¢* %cb) + %cb*‘*}
1

Propagator: G(k) =
PR (%) k2+m2+z—§

=  new “damping” behaviour llir% G(k)=0
%
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Damping in higher loops

' W @@®
v (F) o 72 :

eika k

Hnnpl—ins.(p) — )\2 /d4]€ ]n+1

((0k)2)" [k + m? +

ea—=0: IR divergence for n > 2, i.e. integrand ~ (k2)_”

1  (0k)?

e a=+0: (finite, i.e. integrand ~

(Oh)" [ @™

(0k)=
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Construct a gauge field model
Ui,(1) : 0:A,, =0, +iglA, ¥ €],

F., = 0,4, — 8,4, —ig[A, * A,)]

—~~

D, ,e=0,e—iglA, % e] Ly, =l
2 2
4 o TR —" u
/d CU¢(ZC)€2—D¢(ZU) == /d X ZF” * DQEQ *F/,LI/

1 , 1
Oc (EF> =igle 7 EF]
Drawback: infinite number of vertices ...
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a (WA
IR modified gauge field model

Model requires modification in the IR




New gauge field action

! - 1 o
Sloc = /d4£€ |:4F/M/F’uy + S (<Q,UJ/O&BB,LH/ + hC)E (fozﬁ T+ 62(16 f))

. 0,,0,,0, _
(6" Bu) + 5 (@'{A Ay Ap> T 5(e0, A")
sA, =D,c, sc = 1gc* c, sc =0, sb =0,
szpw,—Bw,, SBM,,:O & By = W 5 | Wy = U,
SCQMVQB‘_'Jﬁvaﬁv 'SJLVaﬁ =0,
$Quvas = Juvas s Juvap =0, sQ =J, sJ =0.
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Soft breaking

) i _ / . /2
Q“VO‘B ‘phys P Q'U“’/Q‘B |phys Q ‘phys I ‘phys > L

Juuaﬁ‘phys . J“Vaﬁ‘phys — (5,1LOC5VB 5,u551/oz)

@ Propagator with IR damping

GAA(k)

1 ( 2 (Hk)u(gk)v>
A 0 v N f(’ya g, k )
(1 i) NP N

2 Can we derive a “horizon condition” for the
o  Gribov-like parameters?
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Conclusion

e Have constructed a promising candidate for a
renormalizable NC gauge field model, but need to
prove renormalizability to all orders.

e Method used to prove renormalizability of scalar
models would break gauge invariance in our case.

e |s there a relation between UV/IR mixing and the
Gribov problem in NC gauge field theories?
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NCQFT & matrix models

Action of renormalizable scalar Grosse-Wulkenhaar model:

~ Q? * m? o A o
Scw = /d4 <——Cl?u, ]2—7{5% ¢}2—7¢2+I¢4>

where [Z, * ¢] = [(07'x), ¥ ¢] = i0,¢
U couple to gauge fields
[ Xy x¢l  with X, =2, +gA,, i[X,5X,]=0,, —gFu

. 5

Skt = Tr ([ X%, X[ X4, Xp] + ¥, [X %, U])

Supersymmetric IKKT matrix model is expected to
be renormalizable - cf. Nucl.Phys. B498 (1997) 467.




Emergent gravity

X% Herm. matrices on H, and 74 is D-dim. flat metric

X = (X*,®), p=1,...,2n, i=1,...,D — 2n,
so that ®*(X) ~ ¢*(x) define embedding M?" «— RP

Guv(T) =

(%:Ua@,/a:bnab

(in semi-classical limit)

M?" endowed with a Poisson structure
—i| XH, XY ~ {xt, 2" }pp = 0* () = “effective” metric

\/det 0,0
GHrY — e—ae,upel/agpa —0

O, PO @

_Ty[X®, B][X,, D] ~ / d*2/det 01 01697 9, %0,

(cf. Class.Quant.Grav. 27 (2010) 133001 [arXiv:1003.4134])




UV/IR mixing due to gravity

e add U(N) valued gauge fields: X" = X* + A"

e Effective matrix model action then describes gauge
fields in a gravitational background

e However, the U(1) and SU(N) subsectors play very
different roles: U(1) purely gravitational

=) non-commutative U(N) gauge field theory
describes SU(N) fields coupled to gravity

> alternative interpretation of UV/IR mixing

(cf. Class.Quant.Grav. 27 (2010) 133001 [arXiv:1003.4134])




