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1 Introduction

PyDislocDyn [1]] is a suite of python programs designed to perform various calculations for basic
research in dislocation dynamics in metals with various crystal symmetries in the continuum limit.
Its main features summarize as:

compute averages of elastic constants (various methods, see [2])

compute the steady-state displacement (gradient) field of a dislocation for arbitrary character
angle in an arbitrary crystal geometry [3, 4]; a generalization to accelerating dislocations is
in progress and so far has been implemented for pure screw dislocations [5] and pure edge
dislocations [6]

compute theoretical limiting velocities of dislocations in arbitrary slip systems and with ar-
bitrary character angle [[7-10]]

compute the elastic strain energy and line tension for any dislocation [11]]

compute the dislocation drag coefficient B from phonon wind for any dislocation at any veloc-
ity [12H15] or stress [[16-18].

This manual is intended as a brief introduction on how to use the most common features of PyDis-
locDyn 1.2.9 and higher [1]. It does not describe every option of every function or method, and we
refer to the doc-string of those functions, classes and methods for further details.

PyDislocDyn is developed by the present author and can be downloaded from
github.com/dblaschke-LANL/PyDislocDyn

where it is distributed under the BSD-3 license, (Copyright, Triad National Security, LL.C; C Num-
ber:/(C18073), see the included 1license.txt for details.

2 Requirements

PyDislocDyn 1.2.5 and higher requires Python 3.8 or highexE] and it is recommended to use
the latest version. As of PyDislocDyn 1.2.9, required modules include Numpy = 1.17, Scipy
= 1.6, Sympy = 1.6, Matplotlib = 3.1, and Pandas = 1.1 (though Pandas = 1.3 including its
optional dependency Jinja2 is recommended).

Optional, but highly recommended in order to conduct drag coefficient calculations with rea-
sonable speed are: Numba = 0.47 (a just-in-time compiler for python), Joblib = 0.14 (for paral-
lelization), and a Fortran compiler supported by numpy.f2py. To compile the optional Fortran
subroutines run ‘python -m numpy.f2py -c subroutines.f90 -m subroutines’.
Optionally, the subroutines can also be compiled with OpenMP parallelization support by
passing the appropriate options for your compiler. For example, with gfortran on Linux or
MacOS with python < 3.11 compile with:

‘python -m numpy.f2py --f90flags=-fopenmp -lgomp -c subroutines.f90

-m subroutines’;

or with python = 3.12:

1The last version to support Python 2.7 was PyDislocDyn 1.2.0, Python 3.5 was supported up to version 1.2.3, and
Python 3.6 up to version 1.2.4
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‘python -m numpy.f2py --dep=openmp -c subroutines.f90 -m subroutines’.

The number of threads used by the subroutines is then controlled by environment variable
OMP_NUM_THREADS. Unless set by the user prior to running python in the terminal, PyDisloc-
Dyn will attempt to choose an optimal value. Furthermore, PyDislocDyn’s joblib paralleliza-
tion will automatically adjust its ‘Ncores’ variable to avoid over-committing.

3 Running the code

PyDislocDyn 1.2.x reads its material data from input files, though PyDislocDyn also includes a
selection of predefined material data to run simulations immediately. The latter are assembled in
dictionaries within ‘metal_data.py’, see Refs. [19-49].

3.1 Using the front-end scripts

There are four front-end scripts included in PyDislocDyn which all can process one or multiple
input files. They are located together with all sub-modules in folder ‘pydislocdyn’. All four front-
end scripts can optionally be run without input files in which case data from ‘metal_data.py’ will
be used. By passing keyword arguments, an according subset of shipped metals are considered for
the calculations. (See the dictionary keys within ‘metal_data.py’ for valid keywords.)

As a byproduct, sample input files are generated and saved to subfolder ‘temp_pydislocdyn’.
These input files can also be generated by the user directly via the functions ‘writeinputfile()’
or ‘writeallinputfiles()’ defined in ‘metal_data.py’.

3.1.1 polycrystal_averaging.py

Calling ‘python pydislocdyn/polycrystal_averaging.py inputfilel inputfile2 ...’ will
compute average elastic constants (second and if applicable third order) using Voigt, Reuss, Hill,
and (for cubic only) the Kroner method, see [2] and references therein for details. Results are
written to a text file, ‘averaged_elastic_constants.txt’. Since pydislocdyn (from version 1.2.9)
is a ‘regular package’ in python, all front-end scripts can also be run via python’s -m option, e.g. in
the present case:

‘python -m pydislocdyn.polycrystal_averaging inputfilel inputfile2 ...°.

3.1.2 linetension_calcs.py

Calling ‘python pydislocdyn/linetension_calcs.py inputfilel inputfile2 ...’ will com-
pute the line tension of the dislocations / slip systems defined in the input files as a function of
velocity ‘beta’ (normalized by the average transverse sound speed or by one derived from Lamé
constant mu read from the input file if present) and dislocation character angle ‘theta’, see [|11] for
details on the method. The default resolution of Nbeta=500 and Ntheta=600 can be changed by
passing options on the command line, e.g.:

¢--Nbeta=100 --Ntheta=100".

Option --Nbeta=0 can be abused to skip line tension calculations and to just generate the plots
using results from a previous run. Additional command line options include: the resolution of the
discretized polar angle --Nphi, an option to skip generating the plots via --skip_plots, an op-
tion to override the automatic number of parallel (joblib) processes to spawn via --Ncores, and
more; run linetension_calcs --help for a list of all supported command line options and their



expected data types.

Results are saved as compressed text files with naming scheme ‘LT_metalname.dat.xz’ and re-
sults from a previous run will first be moved to ‘LT_metalname.dat.bak.xz’. These result files
can be conveniently read into a pandas.DataFrame by using function ‘read_2dresults’ which
can be imported from ‘pydislocdyn’. Additionally, a number of plots are generated and saved as
pdf files.

3.1.3 dragcoeff_iso.py

Calling ‘python pydislocdyn/dragcoeff_iso.py inputfilel inputfile2 ...’ will compute
the drag coefficient of the dislocations defined in the input files in the isotropic limit as a function
of (normalized) velocity ‘beta’ and as a function of resolved shear stress in units of mPas, see [12,
15, [16] for details on the method. If the input file defines an anisotropic crystal, the code will first
compute the averaged isotropic elastic constants to be used in the calculation. Note that there exists
no accurate averaging scheme for third order elastic constants, so measured isotropic values should
always be preferred, or better yet: compute the drag coefficient in the semi-isotropic approach
using ‘dragcoeff_semi_iso.py’. Results are written to text files ‘drag_metalname.dat’, and
additionally a number of plots are generated and saved as pdf files.

Supported command line options (to change defaults, all optional) include: the resolution of the
normalized velocities --Nbeta, the resolution of various discretized variables, --Nphi, --Nphil,
--Nqg1, --Nt (just the base value as variable t is adaptively refined), an option to skip generating
the plots via keyword --skip_plots, an option to override the automatic number of parallel (joblib)
processes to spawn via --Ncores, additional options to be passed on to subroutine dragcoeff_iso
(defined in the phononwind.py module) via --phononwind_opts="{’keyword’:value,...}", and
more; run dragcoeff_iso --help for a list of all supported command line options and their ex-
pected data types. Option --Ncores=0 can be abused to skip drag coefficient calculations and to
just generate the plots using results from a previous run.

3.1.4 dragcoeff semi_iso.py

Calling ‘python pydislocdyn/dragcoeff_semi_iso.py inputfilel inputfile2 ...’ will com-
pute the drag coefficient in units of mPa s of the dislocations defined in the input files as a function
of (normalized) velocity ‘beta’ and dislocation character angle ‘theta’ as well as resolved shear
stress, see [13, /14, [17] for details on the semi-isotropic approximation to dislocation drag. The de-
fault resolution of Nbeta=99 and Ntheta=21 can be changed by passing options on the command
line, e.g.: ‘--Nbeta=50 --Ntheta=11’.
Additional command line options include: the resolution of various discretized variables, --Nphi,
--Nphil, --Ng, --Nq1, --NphiX, --Nt (just the base value as variable t is adaptively refined), an
option to skip generating the plots via --skip_plots, an option to override the automatic num-
ber of parallel (joblib) processes to spawn via --Ncores, additional options to be passed on to
subroutine dragcoeff_iso via --phononwind_opts="{’keyword’:value,...}", and more; run
dragcoeff_semi_iso --help for a list of all supported command line options and their expected
data types. Option --Ncores=0 can be abused to skip drag coefficient calculations and to just gen-
erate the plots using results from a previous run.

By default, the lowest dislocation limiting velocity is computed on the fly for every character an-
gle and drag coefficient calculations will be skipped beyond these velocities (on a per character an-
gle basis, see ‘inf’ entries in the resulting ‘drag_anis_metalname.dat.xz’ files). This behavior
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is controlled by Boolean option ¢--skiptransonic’. Additionally, a number of plots are generated
and saved as pdf files. Drag coefficient results (as functions of velocity) are written to files with
naming scheme ‘drag_anis_metalname.dat.xz’; these can be conveniently read into a pandas
dataframe by using function ‘read_2dresults’ which can be imported from ‘pydislocdyn’.

3.2 Anatomy of an input file

Input files are text files assigning values to keywords known to PyDislocDyn. All entries adhere to
the format

keyword = value

where all numerical values must be set in SI units. Comments are allowed and start with ‘#’.
Required keywords include:

sym: defines the crystal symmetry, recognized values are iso, fcc, bec, cubic (for cubic I),
hcp, tetr (for tetragonal I), trig (for trigonal I), tetr2 (for tetragonal II), orth (for or-
thorhombic), mono (for monoclinic), and tric (for triclinic), see [50] for an overview over these
crystal systems.

rho: the material density

lattice constant(s) and angles: lattice constant a is always required, 1cb and ¢ may be re-
quired depending on sym (keyword b is reserved for the Burgers vector direction, see below);
angles between lattice basis vectors (only required by lower symmetries where they cannot
be inferred from keyword sym) are denoted by alpha, beta, gamma and are provided in degrees
(not radians). The unit cell volume is then automatically computed.

Second order elastic constants (SOEC): for sym in one of iso—tetr, every required elastic
constant is set with its own keyword (e.g. c44 etc.); for lower symmetries, all values are
assigned to one keyword, cij, and must be a assembled in one line separated by commas.
The order is ascending, i.e. c11 comes before c12 etc.; see [50] for further details on which
elastic constants need to be provided for each crystal system.

n0 or MillernO: requires comma separated values and denotes the slip plane normal in
Cartesian coordinates or Miller indices for planes (i.e. in reciprocal space); its length is ig-
nored, Miller indices MillernO (if provided) are automatically converted to Cartesian coordi-
nates n0, and n0 is automatically normalized.

b or Millerb: requires comma separated values and denotes the Burgers vector direction in
Cartesian coordinates or Miller indices; its length is only used to infer the Burgers vector
length burgers (unless the latter is provided explicitly in the input file, see optional key-
words below). If provided, Miller indices Millerb are automatically converted to Cartesian
coordinates b, and b is automatically normalized.

The following keywords are optional (depending on the intended use case):

burgers defines the Burgers vector length; if omitted it is inferred from Millerb or b (in
which case their length matters).

name: a name for your instance of the Dislocation class; defaults to the file name of the
input file. Though not strictly necessary it is recommended to set a name.



T: the material temperature where density and elastic constants were measured (or calcu-
lated); defaults to 300K if omitted.

¢ Jlam and mu: polycrystal averages for the Lamé constants; if omitted, they are calculated by
averaging over the (anisotropic) SOECs.

* Third order elastic constants (TOEC), these are required for phonon wind (dislocation drag)
calculations: for sym in one of iso—tetr, every required elastic constant is set with its own
keyword (e.g. c123 etc.); for lower symmetries, all values are assigned to one keyword, cijk,
and must be a assembled in one line separated by commas. The order is ascending, i.e. c111
comes before c112 etc.; see [50] for further details on which elastic constants need to be
provided for each crystal system.

* alpha_a: denotes the thermal expansion coefficient; only used if dislocation drag is computed
for multiple temperatures >=T.

3.3 Working with the classes
3.3.1 The ‘Dislocation’ class

To work with an instance of PyDislocDyn’s main class, the Dislocation class, it is recommended
to import the following:

‘from pydislocdyn import readinputfile’

and then to use that function to initialize an instance of the Dislocation class using an input file.
By default, only pure screw and pure edge dislocations are initialized; to initialize more than 2
character angles, set option Ntheta accordingly when calling readinputfile(...).

Upon initialization, several quantities are automatically calculated and stored as attributes, in
particular: the tensors of elastic constants in Voigt notation are saved as attributes .C2 (SOEC)
and (if applicable) .C3 (TOEC), the (polycrystalline averages of) longitudinal and transverse sound
speeds .cl and .ct, as well as the average Bulk modulus . bulk, Young’s modulus . young, Poisson’s
ratio .poisson, and the edge of the first Brillouin zone in the Debye approximation .gBZ. If sym
is fcc, bec, or cubic, also the Zener anisotropy ratio . Zener and elastic constant . cp=(c11 —c12)/2
are additionally calculated. Furthermore, the dislocation line and slip directions are determined
for all requested dislocation character angles theta.

Function readinputfile () defines some additional defaults and options making the initializa-
tion of the Dislocation class easier: Instead of passing an array theta (default: None), one may pass
an integer Ntheta (default: 2) and a Boolean keyword symmetric (default: True), and array theta
is subsequently generated with Ntheta entries between 0 and 7/2 (or in the interval [—r/2, /2] if
symmetric=False and the latter keyword may also be included in the input file as it depends on the
slip plane geometry whether the full range needs to be considered). Boolean keyword isotropify
finally allows to initialize an isotropic instance of the Dislocation class from an input file for an
anisotropic crystal by automatically averaging the elastic constants.

Once initialized, many calculations are available via the classes methods such as:

* _compute_Lame () to calculate the isotropic averages of the SOECs

* _computesound(v) to calculate the sound speeds for a wave propagating in direction v



e .computevcrit() to calculate limiting velocities for all character angles initialized in the
class

e .findvcrit_smallest() returns the lowest limiting velocity for all character angles (inde-
pendent of Ntheta)

¢ .findRayleigh() calculates the Rayleigh wave speed for every initialized character angle,
i.e. for the slip directions of dislocations of every character angle, see [10].

e .find_vRF() calculates ‘radiation-free’ velocities, i.e. transonic edge dislocation velocities
that theory predicts are free of shock waves, see [51,, 52|

e _computeuij(beta) calculates the steady-state dislocation displacement gradient field in
Cartesian coordinates aligned with the crystal as a function of polar angle phi in the plane
perpendicular to the dislocation line using the Stroh / integral method [3]] for all initialized
character angles. Argument beta is the normalized velocity (e.g. v/ct by default, where ct
is the averaged transverse sound speed). The result is stored in attribute .uij.

* . computeuk(beta) calculates the steady-state dislocation displacement field (no gradient) in
Cartesian coordinates aligned with the crystal as a function of polar angle phi in the plane
perpendicular to the dislocation line using the Stroh / integral method [3] for all initialized
character angles. Argument beta is the normalized velocity (e.g. v/ct by default, where ct
is the averaged transverse sound speed). The result is stored in attribute . uk.

* .alignC2() computes the tensor of SOEC in coordinates aligned with the dislocation line and
slip plane normal; it’s result, ‘. C2aligned’, contains an array of SOEC tensors whose entries
correspond to the character angles.

* _computerot () is automatically called by .alignC2() and calculates the rotation matrices
for all character angles necessary to align coordinates with the dislocation line and slip plane
normal

* .alignuij() rotates .uij (the result of .computeuij()) into coordinates aligned with the
dislocation line and slip plane normal and stores the result in .uij_aligned; . computerot ()
(or alignC2()) must be called first.

* .alignuk() rotates .uk (the result of . computeuk()) into coordinates aligned with the dislo-
cation line and slip plane normal and stores the result in .uk_aligned; .computerot() (or
alignC2()) must be called first.

* .computeuij_acc_screw(a,beta) calculates the dislocation displacement gradient field of
a screw dislocation accelerating from rest at rate a at the time where its normalized velocity
matches beta, provided the plane perpendicular to the dislocation line is a reflection plane.
The result is stored in .uij_acc_screw_aligned and, as the name suggests, is calculated in
coordinates aligned with the dislocation line and slip plane norma]ﬂ

2Note: this method and attribute were renamed .computeuij_acc() — .computeuij_acc_screw() and .uij_acc_aligned —
.uij_acc_screw_aligned in PyDislocDyn 1.2.7.



* .computeuij_acc_edge(a,beta) likewise calculates the dislocation displacement gradient
field of an edge dislocation accelerating from rest at rate a at the time where its normalized
velocity matches beta, provided the plane perpendicular to the dislocation line is a reflec-
tion plane. The result is stored in .uij_acc_edge_aligned and, as the name suggests, is
calculated in coordinates aligned with the dislocation line and slip plane normal.

* Method .plotdisloc() generates a color-mesh plot of one component (choose with keyword
‘component’) of the dislocation displacement gradient field of one character angle (choose
with keyword ‘character’) and saves it as a pdf file. If velocity beta is set, the disloca-
tion field is computed on the fly (and other arguments of this function are passed along to
the .computeuij() method). Setting showplt=True will display the plot inline in addition
to saving a pdf; this option requires that the user first set ‘Jmatplotlib inline’, as the
default matplotlib back-end set by PyDislocDyn is ‘Agg’ (in order to facilitate running in a
remote terminal session).

* _computeEtot () will calculate the elastic strain self energy of the dislocation from the pre-
viously calculated displacement gradient field for all character angles and stores the result
in attribute .Etot

¢ .computeLT() will calculate the line tension from .Etot for all character angles and stores
its result in .LT. Warning: this calculation requires a high resolution in character angle,
Ntheta>=100 is recommended. Furthermore, since numerical differentiation is involved, the
array .LT will be shorter than the array .Etot by two entries, i.e. in order to get results for
pure screw and edge, theta must contain one additional angle past each end of the interval.

3.3.2 The ‘metal_props’ class

The metal_props class is one of the parents of the Dislocation class. It lets the user who is not
interested in dislocations work with elastic constants (including polycrystal averages), compute
sound speeds, convert Miller indices to Cartesian indices and more. Instances of this class can
be populated using the same input file format discussed above in section though keywords
relating to dislocations (i.e. b, n0, Millerb, MillernO, burgers) can be omitted. In order to read an
input file to initialize an instance of the metal_props class, import the following:

‘from pydislocdyn.polycrystal_averaging import readinputfile’

3.3.3 The ‘strain_poly’ class

The strain_poly class can be used to determine which type of infinitesimal strain deformation is
sensitive to which elastic constants and is thus helpful in preparing simulations using third party
software to calculate elastic constants. In particular, it can calculate the polynomial following from
a Taylor expansion in y as a function of (symbolic) elastic constants, where y parameterizes the
deformation, see e.g. [[18| 53] and references therein for details. To use this class, run

‘from pydislocdyn import strain_poly’

Two arguments are required to initialize an instance: The sympy symbol parametrizing the de-
formation, y (defaults to sympy.symbols(’y’)), and a keyword selecting the crystal system, sym
(defaults to cubic, all values known to the Dislocation class are allowed also here). Method
.generate_poly(epsilon,order=3) calculates a Taylor expansion to the requested order in y
whose coefficients are (sympy symbols of) the elastic constants; epsilon is the infinitesimal strain



in Voigt notation (i.e. a list with 6 entries) which must depend on symbol y. An additional helper
method, .generate_alpha(epsilon), can be used to calculate the symmetric deformation matrix
in Cartesian coordinates that would lead to infinitesimal strain epsilon; the latter need not neces-
sarily depend on symbol y, but may be purely numeric. Both methods support the optional Boolean
keyword preserve_volume (defaults to False), which may be set to force the deformation to pre-
serve the unit cell volume by ensuring that the deformation matrix has determinant 1.

3.4 Using the modules

The most common classes and functions can be accessed directly by importing the main package:
‘pydislocdyn’. In particular this includes the following objects:

Voigt and UnVoigt to convert tensors between Voigt notation and Cartesian coordinates.

elasticC2 and elasticC3 to generate the tensors (i.e. the multidimensional numpy arrays)
of second and third order elastic constants in Cartesian coordinates (default) or in Voigt
notation (set voigt=True).

elasticS2 and elasticS3 to calculate the second and third order compliance tensors from
the elastic (or stiffness) tensors.

the strain_poly class as described above in Section [3.3.3]

helper functions writeinputfile and writeallinputfiles to write data defined in the
python dictionaries of sub-module metaldata to PyDislocDyn input files.

the Dislocation class as well as a function, readinputfile, to populate an instance from

an input file, see Sections and

read_2dresults, to read files containing results from line tension or drag coefficient calcu-
lations into a pandas.DataFrame as described in Section [3.1]

the metal_props class, see Section a function to populate an instance from an input
file is available from sub-module polycrystal_averaging.readinputfile.

function phonondrag to calculate the drag coefficient B in units of mPas as a function of
velocity for an instance of the Dislocation class.

function B_of _sigma to calculate the drag coefficient B as a function of stress o from a pre-
viously determined fitting function for B(v) as a function of dislocation velocity v.

function plotuij generates a heat map plot of a 2-dimensional dislocation field.

Additional functions are available within the sub-modules:

pydislocdyn.elasticconstants with functions related to elastic constants,

pydislocdyn.metaldata which contains a number of python dictionaries of material data
included in PyDislocDyn (see pydislocdyn.metaldata.all_metals, which is a set of key-
words for metals included in this sub-module),



pydislocdyn.phononwind which contains function phonondrag to calculate the drag coeffi-
cient B as mentioned in the list above, as well as its subroutines,

pydislocdyn.dislocations which contains the StrohGeometry class (one of two parents of
the Dislocation class) and functions used under the hood by the Dislocation class.

pydislocdyn.subroutines, if it is compiled using numpy.f2py and a Fortran compiler, pro-
vides some faster alternatives to a subset of functions defined in pydislocdyn.phononwind
and pydislocdyn.dislocations; the code will use them automatically if they are available
(as indicated by the Boolean variable pydislocdyn.usefortran).

the front-end scripts which are described in Sec. pydislocdyn.polycrystal_averaging,
pydislocdyn.linetension_calcs, and pydislocdyn.dragcoeff_semi_iso, are also sub-
modules; classes and functions useful to the user are aliased to the top level and are thus
available directly under pydislocdyn, as listed above.
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