Heat Kernel Expansion and Induced Action for Matrix Models

Talk presented by Daniel N. Blaschke

Recipient of an APART -fellowship of the Austrian Academy of Sciences at the
universität University of Vienna, Faculty of Physics, Mathematical Physics Group

Collaborators: H. Steinacker, M. Wohlgenannt
Prague 2011, August 8

Matrix models of Yang-Mills type

$$
S_{Y M}=-\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{c}, X^{d}\right] \eta_{a c} \eta_{b d}
$$

X^{a} Herm. matrices on \mathcal{H}, and $\eta_{a b}$ is D-dim. flat metric

$$
X^{a}=\left(X^{\mu}, \Phi^{i}\right), \mu=1, \ldots, 2 n, i=1, \ldots, D-2 n,
$$ so that $\Phi^{i}(X) \sim \phi^{i}(x)$ define embedding $\mathcal{M}^{2 n} \hookrightarrow \mathbf{R}^{D}$ $g_{\mu \nu}(x)=\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b}$ (in semi-classical limit)

Matrix models of Yang-Mills type

$$
S_{Y M}=-\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{c}, X^{d}\right] \eta_{a c} \eta_{b d}
$$

X^{a} Herm. matrices on \mathcal{H}, and $\eta_{a b}$ is D-dim. flat metric

$$
X^{a}=\left(X^{\mu}, \Phi^{i}\right), \mu=1, \ldots, 2 n, i=1, \ldots, D-2 n,
$$

so that $\Phi^{i}(X) \sim \phi^{i}(x)$ define embedding $\mathcal{M}^{2 n} \hookrightarrow \mathbf{R}^{D}$
$g_{\mu \nu}(x)=\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b}$ (in semi-classical limit)
$\mathcal{M}^{2 n}$ endowed with a Poisson structure $-i\left[X^{\mu}, X^{\nu}\right] \sim\left\{x^{\mu}, x^{\nu}\right\}_{p b}=\theta^{\mu \nu}(x) \Rightarrow$ "effective" metric

$$
G^{\mu \nu}=e^{-\sigma} \theta^{\mu \rho} \theta^{\nu \sigma} g_{\rho \sigma}=-\left(\mathcal{J}^{2}\right)_{\rho}^{\mu} g^{\rho \nu}, \quad e^{-\sigma} \equiv \frac{\sqrt{\operatorname{det} \theta_{\mu \nu}^{-1}}}{\sqrt{\operatorname{det} G_{\rho \sigma}}}
$$

Matrix models of Yang-Mills type

$$
S_{Y M}=-\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{c}, X^{d}\right] \eta_{a c} \eta_{b d}
$$

X^{a} Herm. matrices on \mathcal{H}, and $\eta_{a b}$ is D-dim. flat metric

$$
X^{a}=\left(X^{\mu}, \Phi^{i}\right), \mu=1, \ldots, 2 n, i=1, \ldots, D-2 n,
$$

so that $\Phi^{i}(X) \sim \phi^{i}(x)$ define embedding $\mathcal{M}^{2 n} \hookrightarrow \mathbf{R}^{D}$
$g_{\mu \nu}(x)=\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b}$ (in semi-classical limit)
$\mathcal{M}^{2 n}$ endowed with a Poisson structure
$-i\left[X^{\mu}, X^{\nu}\right] \sim\left\{x^{\mu}, x^{\nu}\right\}_{p b}=\theta^{\mu \nu}(x) \Rightarrow$ "effective" metric

$$
\begin{gathered}
G^{\mu \nu}=e^{-\sigma} \theta^{\mu \rho} \theta^{\nu \sigma} g_{\rho \sigma}
\end{gathered}=-\left(\mathcal{J}^{2}\right)_{\rho}^{\mu} g^{\rho \nu}, \quad e^{-\sigma} \equiv \frac{\sqrt{\operatorname{det} \theta_{\mu \nu}^{-1}}}{\sqrt{\operatorname{det} G_{\rho \sigma}}}
$$

Matrix models and gravity

define projectors on the tangential/normal bundle of $\mathcal{M} \subset \mathbb{R}^{D}$ as

$$
\begin{aligned}
& \mathcal{P}_{T}^{a b}=g^{\mu \nu} \partial_{\mu} x^{a} \partial_{\nu} x^{b}, \\
& \mathcal{P}_{N}^{a b}=\eta^{a b}-\mathcal{P}_{T}^{a b}
\end{aligned}
$$

Matrix models and gravity

define projectors on the tangential/normal bundle of $\mathcal{M} \subset \mathbb{R}^{D}$ as

$$
\begin{aligned}
& \mathcal{P}_{T}^{a b}=g^{\mu \nu} \partial_{\mu} x^{a} \partial_{\nu} x^{b}, \\
& \mathcal{P}_{N}^{a b}=\eta^{a b}-\mathcal{P}_{T}^{a b},
\end{aligned}
$$

Characteristic equation for $2 n=4$:

$$
\left(\mathcal{J}^{2}\right)^{\mu}{ }_{\nu}+\frac{(G g)}{2} \delta^{\mu}{ }_{\nu}+\left(\mathcal{J}^{-2}\right)^{\mu}{ }_{\nu}=0
$$

$2 n=4$: special class of geometries where $G_{\mu \nu}=g_{\mu \nu}$ i.e. $\Theta=\frac{1}{2} \theta_{\mu \nu}^{-1} d x^{\mu} \wedge d x^{\nu}, \quad \star \Theta= \pm i \Theta \quad \Rightarrow \mathcal{J}^{2}=-\mathbb{1}$

NCGFT coupled to gravity

- add $\mathrm{U}(\mathrm{N})$ valued gauge fields: $\quad X^{\mu}=\bar{X}^{\mu}+\mathcal{A}^{\mu}$

$$
\Rightarrow \quad\left[X^{\mu}, X^{\nu}\right] \sim i\left(1+\mathcal{A}^{\rho} \partial_{\rho}\right) \theta^{\mu \nu}+i \mathcal{F}^{\mu \nu}
$$

- Effective matrix model action then describes gauge fields in a gravitational background

NCGFT coupled to gravity

- add $\mathrm{U}(\mathrm{N})$ valued gauge fields: $\quad X^{\mu}=\bar{X}^{\mu}+\mathcal{A}^{\mu}$

$$
\Rightarrow \quad\left[X^{\mu}, X^{\nu}\right] \sim i\left(1+\mathcal{A}^{\rho} \partial_{\rho}\right) \theta^{\mu \nu}+i \mathcal{F}^{\mu \nu}
$$

- Effective matrix model action then describes gauge fields in a gravitational background
- However, the $U(1)$ and $S U(N)$ subsectors play very different roles: $U(1)$ purely gravitational
non-commutative $U(N)$ gauge field theory
describes $S U(N)$ fields coupled to gravity
alternative interpretation of UV/IR mixing

Introducing the IKKT model

$$
\begin{aligned}
S_{\mathrm{IKKT}} & =\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
\not D \Psi & :=\gamma_{a}\left[X^{a}, \Psi\right], \quad\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b}
\end{aligned}
$$

IKKT matrix model is supersymmetric and expected to be renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor $\Psi=\mathcal{C} \bar{\Psi}^{T}$

Introducing the IKKT model

$$
\begin{aligned}
S_{\mathrm{IKKT}} & =\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
I D \Psi & :=\gamma_{a}\left[X^{a}, \Psi\right], \quad\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b}
\end{aligned}
$$

IKKT matrix model is supersymmetric and expected to be renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor $\Psi=\mathcal{C} \bar{\Psi}^{T}, \quad$ is invariant under SUSY:

$$
\begin{aligned}
& \delta^{1} \Psi=\frac{i}{4}\left[X^{a}, X^{b}\right]\left[\gamma_{a}, \gamma_{b}\right] \epsilon, \quad \delta^{1} X^{a}=i \bar{\epsilon} \gamma^{a} \Psi \\
& \delta^{2} \Psi=\xi, \quad \delta^{2} X^{a}=0
\end{aligned}
$$

Introducing the IKKT model

$$
\begin{aligned}
S_{\mathrm{IKKT}} & =\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
\not D \Psi & :=\gamma_{a}\left[X^{a}, \Psi\right], \quad\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b}
\end{aligned}
$$

IKKT matrix model is supersymmetric and expected to be renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor $\Psi=\mathcal{C} \bar{\Psi}^{T}, \quad$ is invariant under SUSY:

$$
\begin{aligned}
& \delta^{1} \Psi=\frac{i}{4}\left[X^{a}, X^{b}\right]\left[\gamma_{a}, \gamma_{b}\right] \epsilon, \quad \delta^{1} X^{a}=i \bar{\epsilon} \gamma^{a} \Psi \\
& \delta^{2} \Psi=\xi, \quad \delta^{2} X^{a}=0
\end{aligned}
$$

Further symmetries:
$X^{a} \rightarrow U^{-1} X^{a} U$,
$\Psi \rightarrow U^{-1} \Psi U$,
$U \in U(\mathcal{H}), \quad$ gauge inv.
$X^{a} \rightarrow \Lambda(g)_{b}^{a} X^{b}, \quad \Psi_{\alpha} \rightarrow \tilde{\pi}(g)_{\alpha}^{\beta} \Psi_{\beta}$,
$g \in \widetilde{S O}(D)$, rotations,
$X^{a} \rightarrow X^{a}+c^{a} \mathbb{1}$,
$c^{a} \in \mathbb{R}$, translations

IKKT model as GUT candidate?
 $$
S_{\mathrm{IKKT}}=\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right)
$$

- Originially proposed as non-perturbative definition of type IIB string theory,
- Seems to provide a good candidate for quantum gravity and other fundamental interactions,

IKKT model as GUT candidate?
 $$
S_{\mathrm{IKKT}}=\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right)
$$

- Originially proposed as non-perturbative definition of type IIB string theory,
- Seems to provide a good candidate for quantum gravity and other fundamental interactions,
- Here, we consider general NC brane configurations and their effective gravity in the matrix model,
- assume soft breaking of SUSY below some scale \wedge and compute the effective action using a Heatkernel expansion.

The fermionic action

$$
\begin{aligned}
& S_{\Psi}=\operatorname{Tr} \Psi^{\dagger} \not D \Psi=\operatorname{Tr} \Psi^{\dagger} \gamma_{a}\left[X^{a}, \Psi\right] \\
& e^{-\Gamma[X]}=\int d \Psi d \Psi^{\dagger} e^{-S_{\Psi}}=(\text { const. }) \exp \left(\frac{1}{2} \operatorname{Tr} \log \left(\not D^{2}\right)\right) \\
& \quad \not D^{2} \Psi=\gamma_{a} \gamma_{b}\left[X^{a},\left[X^{b}, \Psi\right]\right]=\left(\not D_{0}^{2}+V\right) \Psi
\end{aligned}
$$

The fermionic action

$$
\begin{aligned}
& S_{\Psi}=\operatorname{Tr} \Psi^{\dagger} \not D \Psi=\operatorname{Tr} \Psi^{\dagger} \gamma_{a}\left[X^{a}, \Psi\right] \\
& e^{-\Gamma[X]}=\int d \Psi d \Psi^{\dagger} e^{-S_{\Psi}}=(\text { const. }) \exp \left(\frac{1}{2} \operatorname{Tr} \log \left(\not D^{2}\right)\right) \\
& \quad \not D^{2} \Psi=\gamma_{a} \gamma_{b}\left[X^{a},\left[X^{b}, \Psi\right]\right]=\left(\not D_{0}^{2}+V\right) \Psi
\end{aligned}
$$

- Consider fermions coupled to NC background
- Matrices $X^{\text {a }}$: perturbations around Moyal quantum plane introduce NC scale $\Lambda_{N C}^{4}=e^{-\sigma}$

$$
\begin{aligned}
{\left[\bar{X}^{\mu}, \bar{X}^{\nu}\right] } & =i \bar{\theta}^{\mu \nu} \quad \text { (blockdiagonal, constant) } \\
X^{\mu} & =\left(\bar{X}^{\mu}+\mathcal{A}^{\mu}, \phi^{i}\right)=\left(\bar{X}^{\mu}-\bar{\theta}^{\mu \nu} A_{\nu}, \Lambda_{N C}^{2} \varphi^{i}\right)
\end{aligned}
$$

Heatkernel expansion

$$
\not D_{0}^{2} \Psi:=\eta_{\mu \nu}\left[\bar{X}^{\mu},\left[\bar{X}^{\nu}, \Psi\right]\right]=-\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} \partial_{\mu} \partial_{\nu} \Psi
$$

components of $\left[X^{a}, X^{b}\right]$:

$$
\begin{array}{rlr}
{\left[X^{\mu}, X^{\nu}\right]} & =i\left(\bar{\theta}^{\mu \nu}+\mathcal{F}^{\mu \nu}\right), & {\left[X^{\mu}, \phi^{i}\right]=i \bar{\theta}^{\mu \nu} D_{\nu} \phi^{i}} \\
\mathcal{F}^{\mu \nu} & =-\bar{\theta}^{\mu \rho} \bar{\theta}^{\nu \sigma}\left(\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}-i\left[A_{\rho}, A_{\sigma}\right]\right), \\
D_{\nu} \phi & =\partial_{\nu} \phi+i\left[A_{\nu}, \phi\right] &
\end{array}
$$

Heatkernel expansion

$$
\not D_{0}^{2} \Psi:=\eta_{\mu \nu}\left[\bar{X}^{\mu},\left[\bar{X}^{\nu}, \Psi\right]\right]=-\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} \partial_{\mu} \partial_{\nu} \Psi
$$

components of $\left[X^{a}, X^{b}\right]$:

$$
\begin{array}{rlr}
{\left[X^{\mu}, X^{\nu}\right]} & =i\left(\bar{\theta}^{\mu \nu}+\mathcal{F}^{\mu \nu}\right), & {\left[X^{\mu}, \phi^{i}\right]=i \bar{\theta}^{\mu \nu} D_{\nu} \phi^{i}} \\
\mathcal{F}^{\mu \nu} & =-\bar{\theta}^{\mu \rho} \bar{\theta}^{\nu \sigma}\left(\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}-i\left[A_{\rho}, A_{\sigma}\right]\right), \\
D_{\nu} \phi & =\partial_{\nu} \phi+i\left[A_{\nu}, \phi\right] &
\end{array}
$$

Consider Duhamel expansion:

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left(\log \not D^{2}-\log \not D_{0}^{2}\right) & \rightarrow-\frac{1}{2} \operatorname{Tr} \int_{0}^{\infty} \frac{d \alpha}{\alpha}\left(e^{-\alpha \not D^{2}}-e^{-\alpha \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}} \\
& =\Lambda^{4} \sum_{n \geq 0} \int^{4} x \mathcal{O}\left(\frac{(p, A, \varphi)^{n}}{\left(\Lambda, \Lambda_{N C}\right)^{n}}\right)
\end{aligned}
$$

7/17

Small parameters of expansion

- In contrast to previous work, we consider a „semiclassical" low energy regime characterized by

$$
\epsilon(p):=p^{2} \Lambda^{2} / \Lambda_{N C}^{4} \ll 1
$$

- Can expand UV/IR mixing terms as

$$
e^{-p^{2} \Lambda_{N C}^{4} / \alpha} \approx \sum_{m \geq 0} a_{m} \epsilon(p)^{m}
$$

- Avoids pathological phenomena appearing e.g. when

$$
\Lambda \rightarrow \infty \text { and } \Lambda_{N C} \text { fixed }
$$

Small parameters of expansion

- In contrast to previous work, we consider a „semiclassical" low energy regime characterized by

$$
\epsilon(p):=p^{2} \Lambda^{2} / \Lambda_{N C}^{4} \ll 1
$$

- Can expand UV/IR mixing terms as

$$
e^{-p^{2} \Lambda_{N C}^{4} / \alpha} \approx \sum_{m \geq 0} a_{m} \epsilon(p)^{m}
$$

- Avoids pathological phenomena appearing e.g. when

$$
\Lambda \rightarrow \infty \text { and } \Lambda_{N C} \text { fixed }
$$

- Expansion in 3 small parameters:

$$
\Gamma \sim \Lambda^{4} \sum_{n, l, k \geq 0} \int d^{4} x \mathcal{O}\left(\epsilon(p)^{n}\left(\frac{p^{2}}{\Lambda_{N C}^{2}}\right)^{l}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{k}\right)
$$

Effective NC gauge theory action

Weyl quantization map: $|p\rangle=e^{i p_{\mu} \bar{X}^{\mu}} \in \mathcal{A}$

$$
\begin{aligned}
& \bar{P}_{\mu}|p\rangle=i p_{\mu}|p\rangle, \quad \text { with } \bar{P}_{\mu}=-i \theta_{\mu \nu}^{-1}\left[\bar{X}^{\nu}, .\right] \\
& \langle q \mid p\rangle=\operatorname{Tr}(|p\rangle\langle q|)=\operatorname{Tr}_{\mathcal{H}}\left(e^{-i q_{\mu} \bar{X}^{\mu}} e^{i p_{\mu} \bar{X}^{\mu}}\right)=\left(2 \pi \Lambda_{N C}^{2}\right)^{2} \delta^{4}(p-q) \\
& {\left[e^{i k \bar{X}}, e^{i l \bar{X}}\right]=-2 i \sin \left(\frac{k \bar{\theta} l}{2}\right) e^{i(k+l) \bar{X}}, \quad \not D_{0}^{2}|p\rangle=\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} p_{\mu} p_{\nu}|p\rangle}
\end{aligned}
$$

Effective NC gauge theory action

Weyl quantization map: $|p\rangle=e^{i p_{\mu} \bar{X}^{\mu}} \in \mathcal{A}$

$$
\begin{aligned}
& \bar{P}_{\mu}|p\rangle=i p_{\mu}|p\rangle, \quad \text { with } \bar{P}_{\mu}=-i \theta_{\mu \nu}^{-1}\left[\bar{X}^{\nu}, .\right] \\
& \langle q \mid p\rangle=\operatorname{Tr}(|p\rangle\langle q|)=\operatorname{Tr}_{\mathcal{H}}\left(e^{-i q_{\mu} \bar{X}^{\mu}} e^{i p_{\mu} \bar{X}^{\mu}}\right)=\left(2 \pi \Lambda_{N C}^{2}\right)^{2} \delta^{4}(p-q) \\
& {\left[e^{i k \bar{X}}, e^{i l \bar{X}}\right]=-2 i \sin \left(\frac{k \bar{\theta} l}{2}\right) e^{i(k+l) \bar{X}}, \quad \not D_{0}^{2}|p\rangle=\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} p_{\mu} p_{\nu}|p\rangle}
\end{aligned}
$$

And can now compute terms of Duhamel expansion order by order:

$$
\begin{aligned}
\Gamma= & \frac{1}{2} \int_{0}^{\infty} d \alpha \operatorname{Tr}\left(V e^{-\alpha \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}} \\
& -\frac{1}{4} \int_{0}^{\infty} d \alpha \int_{0}^{\alpha} d t^{\prime} \operatorname{Tr}\left(V e^{-t^{\prime} D_{0}^{2}} V e^{-\left(\alpha-t^{\prime}\right) \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N}^{4} C}{\alpha \Lambda^{2}}}+\ldots
\end{aligned}
$$

Gauge invar. of effective NCGFT

Adding up first 3 order contributions leads to the following order \wedge^{4} terms:

$$
\begin{aligned}
\Gamma_{\Lambda^{4}}(A, \varphi, p)= & \frac{\Lambda^{4} \operatorname{Tr} \mathbb{1}}{16 \Lambda_{N C}^{4}} \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g}\left(g^{\alpha \beta} D_{\alpha} \varphi^{i} D_{\beta} \varphi_{i}\right. \\
& -\frac{1}{2} \Lambda_{N C}^{4}\left(\bar{\theta}^{\mu \nu} F_{\nu \mu} \bar{\theta}^{\rho \sigma} F_{\sigma \rho}+\left(\bar{\theta}^{\sigma \sigma^{\prime}} F_{\sigma \sigma^{\prime}}\right)(F \bar{\theta} F \bar{\theta})\right) \\
& -2 \bar{\theta}^{\nu \mu} F_{\mu \alpha} g^{\alpha \beta} \partial_{\nu} \varphi^{i} \partial_{\beta} \varphi_{i}+\frac{1}{2}\left(\bar{\theta}^{\mu \nu} F_{\mu \nu}\right) g^{\alpha \beta} \partial_{\beta} \varphi^{i} \partial_{\alpha} \varphi_{i} \\
& + \text { h.о. })
\end{aligned}
$$

These terms are manifestly gauge invariant

Predictive power of vacuum

Free contribution:

$$
\Gamma[\bar{X}]=-\frac{1}{2} \operatorname{Tr} \int_{0}^{\infty} \frac{d \alpha}{\alpha} e^{-\alpha \not D_{0}^{2}-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}}=-\frac{\Lambda^{4} \operatorname{Tr} \mathbb{1}}{8} \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g}
$$

Along with general geometrical considerations, this suffices to predict loop computations!

Effective matrix model action

$$
\text { consider } \Gamma_{L}[X]=\operatorname{Tr} \mathcal{L}\left(X^{a} / L\right), \quad L=\Lambda / \Lambda_{N C}^{2}
$$

- Commutators correspond to derivative operators for gauge fields
- Leading term of eff. action can be written in terms of products of

$$
J_{b}^{a}:=i \Theta^{a c} g_{c b}=\left[X^{a}, X_{b}\right], \quad \operatorname{Tr} J \equiv J_{a}^{a}=0
$$

Effective matrix model action

$$
\text { consider } \Gamma_{L}[X]=\operatorname{Tr} \mathcal{L}\left(X^{a} / L\right), \quad L=\Lambda / \Lambda_{N C}^{2}
$$

- Commutators correspond to derivative operators for gauge fields
- Leading term of eff. action can be written in terms of products of

$$
J_{b}^{a}:=i \Theta^{a c} g_{c b}=\left[X^{a}, X_{b}\right], \quad \operatorname{Tr} J \equiv J_{a}^{a}=0
$$

Most general single-trace form of effective potential + input from free contribution to the effective action:
$\Gamma_{L}[X]=\operatorname{Tr} V(X)+$ h.o.,
$\operatorname{Tr} V(X)=-\frac{1}{4} \operatorname{Tr}\left(\frac{L^{4}}{\sqrt{-\operatorname{Tr} J^{4}+\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}}}\right) \sim-\frac{1}{8} \int \frac{d^{4} x}{(2 \pi)^{2}} \Lambda^{4}(x) \sqrt{g}$

SO(D) invar. of generalized MM

Can reproduce gauge sector of induced result by a semi-classical analysis with vanishing embedding fields:
$\begin{aligned}\left.\frac{1}{\sqrt{\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}-\operatorname{Tr} J^{4}}}\right|_{\partial \phi^{i}=0} \sim \frac{\Lambda_{N C}^{4}}{2}(1 & +\frac{1}{2} \bar{\theta}^{\mu \nu} F_{\mu \nu}+\frac{1}{4}(\bar{\theta} F)^{2} \\ & \left.+\frac{1}{4}(\bar{\theta} F)(F \bar{\theta} F \bar{\theta})+\mathcal{O}\left(F^{4}\right)\right)\end{aligned}$
Effective action can be written as a generalized matrix model with manifest SO(D) symmetry.

SO(D) invar. of generalized MM

Can reproduce gauge sector of induced result by a semi-classical analysis with vanishing embedding fields:

$$
\begin{aligned}
\left.\frac{1}{\sqrt{\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}-\operatorname{Tr} J^{4}}}\right|_{\partial \phi^{i}=0} \sim \frac{\Lambda_{N C}^{4}}{2}(1 & +\frac{1}{2} \bar{\theta}^{\mu \nu} F_{\mu \nu}+\frac{1}{4}(\bar{\theta} F)^{2} \\
& \left.+\frac{1}{4}(\bar{\theta} F)(F \bar{\theta} F \bar{\theta})+\mathcal{O}\left(F^{4}\right)\right)
\end{aligned}
$$

Effective action can be written as a generalized matrix model with manifest SO(D) symmetry.

Can be further generalized to include curvature terms.

$$
\int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g} \Lambda(x)^{2}\left(R+\left(\bar{\Lambda}_{\mathrm{NC}}^{4} e^{-\sigma} \theta^{\mu \rho} \theta^{\eta \alpha} R_{\mu \rho \eta \alpha}-4 R\right)+c^{\prime} \partial^{\mu} \sigma \partial_{\mu} \sigma\right)
$$

Bosonic action

$S_{b}=-\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]\right)$

- Employ background field method: $X^{a} \rightarrow X^{a}+Y^{a}$
- Effective action in $X^{\text {a }}$: keep only parts quadratic in Y
- Need to fix gauge for Y and add ghosts

Bosonic action

$$
S_{b}=-\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]\right)
$$

- Employ background field method: $X^{a} \rightarrow X^{a}+Y^{a}$
- Effective action in $X^{\text {a }}$: keep only parts quadratic in Y
- Need to fix gauge for Y and add ghosts

$$
S_{g f}+S_{\text {ghost }}=-\operatorname{Tr}\left(\left[X^{a}, Y_{a}\right]\left[X^{b}, Y_{b}\right]-2 \bar{c}\left[X^{a},\left[X_{a}, c\right]\right]\right)
$$

leads to quadratic action:

$$
S_{\text {quad }}=2 \operatorname{Tr}\left(Y^{a}\left(\square \delta^{a b}+2 i\left[\Theta^{a b}, .\right]\right) Y_{b}+2 \bar{c} \square c\right)
$$

Non-Abelian sector

background corresponding to N coinciding branes: $X^{a}=\bar{X}^{a} \mathbb{1}_{N}+\mathcal{A}^{a}, \quad \in \mathscr{A} \otimes S U(N), \quad \Theta^{a b}=\bar{\Theta}^{a b} \mathbb{1}_{N}+\mathcal{F}_{\alpha}^{a b} \lambda^{\alpha}$ typical vertex term in the loop integral now looks like:

$$
\begin{aligned}
& {\left[\mathcal{F}_{\alpha}^{a b}\left(k_{1}\right) e^{i k_{1} X} \lambda^{\alpha}, f_{\beta}\left(k_{2}\right) e^{i k_{2} X} \lambda^{\beta}\right]} \\
& =-i \sin \left(\frac{k_{1} \theta k_{2}}{2}\right) \mathcal{F}_{\alpha}^{a b}\left(k_{1}\right) f_{\beta}\left(k_{2}\right) e^{i\left(k_{1}+k_{2}\right) X}\left\{\lambda^{\alpha}, \lambda^{\beta}\right\} \\
& \quad+\cos \left(\frac{k_{1} \theta k_{2}}{2}\right) \mathcal{F}_{\alpha}^{a b}\left(k_{1}\right) f_{\beta}\left(k_{2}\right) e^{i\left(k_{1}+k_{2}\right) X}\left[\lambda^{\alpha}, \lambda^{\beta}\right]
\end{aligned}
$$

Non-Abelian sector

background corresponding to N coinciding branes: $X^{a}=\bar{X}^{a} \mathbb{1}_{N}+\mathcal{A}^{a}, \quad \in \mathscr{A} \otimes S U(N), \quad \Theta^{a b}=\bar{\Theta}^{a b} \mathbb{1}_{N}+\mathcal{F}_{\alpha}^{a b} \lambda^{\alpha}$ typical vertex term in the loop integral now looks like:

$$
\begin{aligned}
& {\left[\mathcal{F}_{\alpha}^{a b}\left(k_{1}\right) e^{i k_{1} X} \lambda^{\alpha}, f_{\beta}\left(k_{2}\right) e^{i k_{2} X} \lambda^{\beta}\right]} \\
& =-i \sin \left(\frac{k_{1} \theta k_{2}}{2}\right) \mathcal{F}_{\alpha}^{a b}\left(k_{1}\right) f_{\beta}\left(k_{2}\right) e^{i\left(k_{1}+k_{2}\right) X}\left\{\lambda^{\alpha}, \lambda^{\beta}\right\} \\
& \quad+\cos \left(\frac{k_{1} \theta k_{2}}{2}\right) \mathcal{F}_{\alpha}^{a b}\left(k_{1}\right) f_{\beta}\left(k_{2}\right) e^{i\left(k_{1}+k_{2}\right) X}\left[\lambda^{\alpha}, \lambda^{\beta}\right]
\end{aligned}
$$

expect low-energy effective action to reduce to $\mathcal{N}=4$ SYM on general background \mathcal{M}.

SUSY breaking: $\mathcal{M}=\mathcal{M}^{4} \times K$

Spontaneous symm. breaking

Consider $S U(N)$ broken down to $S U(N-1) \times U(1)$ through scalar fields $\phi^{i} \sim \lambda$ where λ is the generator of the unbroken $U(1)$. One-loop effective action agrees with expansion of the Dirac-Born-Infeld (DBI) action for a D3-brane in the background of $N-1$ coinciding branes

$$
\begin{aligned}
& S_{\mathrm{DBI}}=T_{3} \int_{\mathcal{M}} d^{4} x \frac{\left|\phi^{2}\right|^{2}}{Q}\left(\sqrt{\left|\operatorname{det}\left(G_{\mu \nu}+\frac{Q}{\left|\phi^{2}\right|^{2}} D_{\mu} \phi^{i} D_{\nu} \phi_{i}+\frac{Q^{1 / 2}}{\left|\phi^{2}\right|} \frac{F_{\mu \nu}}{\Lambda_{N C}^{2}}\right)\right|}\right. \\
& \quad-\sqrt{|\operatorname{det} G|}), \\
& Q=\frac{(N-1)}{2 \pi^{2} \Lambda_{N C}^{4}}, \quad T_{3}=\Lambda_{N C}^{4} \quad \rightarrow \quad g_{s} \alpha^{\prime 2}=\frac{1}{2 \pi \Lambda_{N C}^{4}}
\end{aligned}
$$

Conclusion

- Computed the effective fermion action, first from NC field theory, then from the matrix model point of view,
- SO(D) symmetry is preserved,
- Need to complete the discussion of the bosonic action and the non-Abelian sector (work in progress).

References

1.D. N. Blaschke, H. Steinacker and M. Wohlgenannt, Heat kernel expansion and induced action for the matrix model Dirac operator, JHEP 03 (2011) 002, [arXiv:1012.4344].
2.D. N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, work in progress.
3. H. Steinacker, Emergent Geometry and Gravity from Matrix Models: An Introduction, Class.Quant. Grav. 27 (2010) 133001, [arXiv:1012.4344].

References

1.D. N. Blaschke, H. Steinacker and M. Wohlgenannt, Heat kernel expansion and induced action for the matrix model Dirac operator, JHEP 03 (2011) 002, [arXiv:1012.4344].
2.D. N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, work in progress.
3. H. Steinacker, Emergent Geometry and Gravity from Matrix Models: An Introduction, Class.Quant. Grav. 27 (2010) 133001, [arXiv:1012.4344].

