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Matrix models of Yang-Mills type

Sym = —Tr[ X, X [X XN0enba
X% Herm. matrices on H, and 74 is D-dim. flat metric

X = (X+*®), p=1,...,2n, i=1,...,D — 2n,
so that ®(X) ~ ¢'(z) define embedding M?" — RP
9uv () = 8u:vaf9yxb77ab (in semi-classical limit)
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Sym = —Tr[ X, X [X XN0enba
X% Herm. matrices on H, and 74 is D-dim. flat metric

X = (X+*®), p=1,...,2n, i=1,...,D — 2n,
so that ®*(X) ~ ¢'(x) define embedding M?" — RP

9uv () = 8M:E“8,/xb77ab

(in semi-classical limit)

M?2" endowed with a Poisson structure
—i| XH, XY ~ {aH, 2" }pp = OFY () = “effective” metric

\/det 0w
GPv e—ag,upevagpo_ - —(jQ)’pj’ng, e 7 =

CTe[X® D] [X,, D] ~ / dAaN/det 0-1 0" 077 0, 2%, 100, b
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Matrix models and gravity

n
PT — g“”@ux“&,xb,
PN — 77 P%b

define projectors on the tangential /normal bundle of M C RP as
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Matrix models and gravity

define projectors on the tangential /normal bundle of M C RP as

n

P = g"" 0,20, 2",

ab ab ab
PN:n _PTa

Characteristic equation for 2n = 4:
(j2)“,/ 4 (GZQ) SH 4+ (j—Q)MV —0

2n = 4: special class of geometries where G, = g,
ie. ©® = %Q;I}dx“ A dx" *O = +10 —. T — |



/ 4

NCGFT coupled to gravity

e add U(N) valued gauge fields: XH = XH 4 AH
= [X“’XV] Ni(1+¢4p8p>9“y+if'“”

e Effective matrix model action then describes gauge
fields in a gravitational background



NCGFT coupled to gravity

e add U(N) valued gauge fields: XH = XH 4+ A*
=  [XH* XY] ~ (1 + APD,)0M + i FH

e Effective matrix model action then describes gauge
fields in a gravitational background

e However, the U(1) and SU(N) subsectors play very
different roles: U(1) purely gravitational

) non-commutative U(N) gauge field theory
describes SU(N) fields coupled to gravity

> alternative interpretation of UV/IR mixing

3/ 1
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Introducing the IKKT model
Sikxt = Tr ([X%, X[ X4, Xp] + U7, [X%, ¥])
DY = v,[X*, V], {7a, 7} = 2nab

. 1

IKKT matrix model is supersymmetric and expected to be
renormalizable - cf. Nucl.Phys. B498 (1997) 467.

Majorana-Weyl spinor ¥ = CU*
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Introducing the IKKT model
Sikxt = Tr ([X%, X[ X4, Xp] + U7, [X%, ¥])
lb\lj -= Va[Xav \Ij] 9 {7a77b} = 27Nap

. 1

IKKT matrix model is supersymmetric and expected to be
renormalizable - cf. Nucl.Phys. B498 (1997) 467.

Majorana-Weyl spinor ¥ = CU* | is invariant under SUSY:

520U = ¢, 52 X% =0
Further symmetries:
X* U~ tXxeU, v U oU, UcU(H), gauge inv.
X% 5 A(g)eX?, U, — 7(g)lWs, g € SO(D), rotations,

X% — X%+ 1, c" eR, translations
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IKKT model as GUT candidate?

Sikxt = Tr ([X%, X°][Xa, Xb] + ¥v,[X%, ¥])

e Originially proposed as non-perturbative definition of type IIB
string theory,

e Seems to provide a good candidate for qguantum gravity and
other fundamental interactions,
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IKKT model as GUT candidate?

Sikxt = Tr ([X%, X°][Xa, Xb] + ¥v,[X%, ¥])

e Originially proposed as non-perturbative definition of type IIB
string theory,

e Seems to provide a good candidate for quantum gravity and
other fundamental interactions,

e Here, we consider general NC brane configurations and their
effective gravity in the matrix model,

e assume soft breaking of SUSY below some scale A and compute
the effective action using a Heatkernel expansion.
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The fermionic action

Sy = Tr¥ TP = Tr¥iy, [ X, U]

.
e TIX] = /d\Ifd\I!Te_S‘I’ = (const.) exp (§Tr log(lf))

DU = v,7[X%, [XP, 0] = (D + V)W
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The fermionic action

Sy = Tr¥ " DU = Tr¥'~,[ X, U]

e TIX] = /d\Ifd\IfTe_S‘I’ — (const.) exp (%Tr log(lf))

DU = v,7[X%, [XP, 0] = (D + V)W

e Consider fermions coupled to NC background
e Matrices X®: perturbations around Moyal quantum plane
= introduce NC scale Ayg =e""

[ XH, X¥] = i0" (blockdiagonal, constant)
Xt = (X" A", ¢") = (XH — 0" Ay, Ajc ')
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Heatkernel expansion

wgqj = Nuv [X'Uda [Xy, \Ij]] — —A&%é“”@uﬁy\lj

components of [ X%, X?]:
(X, XV] = i(§" + FH), X", ¢'] = i0" D, ¢
FH = —gHP0"° (8,A0 — 85 Ap — i[Ap, As)),
D,¢ = 0,6 +i[A,, P
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Heatkernel expansion

Z2(2)\11 = TNy [X,u’ [Xy’ \Ij]] — _A]_\fzééuyﬁ,u,au\lj

components of [ X%, X?]:
[ XH, XY = i(0"Y + FH),

r

DVQS — au¢ + i[Auy gb]

| Consider Duhamel expansion:

©.@)

1
——Tr/
2

do

87

(X '] = i0" D, ¢

- Fi = 010" (9,Ay — 05.A, —i[Ay, Ag]) .

2 2 __"NC
(e_o‘]p —e_o‘wo)e aA?
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Small parameters of expansion

e |n contrast to previous work, we consider a ,, semi-
classical” low energy regime characterized by

e(p) == p°A? /AN < 1

e Can expand UV/IR mixing terms as
e P ANC/% 5 N ge(p)™
m>0
e Avoids pathological phenomena appearing e.g. when
A — oo and A ¢ fixed



Small parameters of expansion

In contrast to previous work, we consider a ,,semi-
classical” low energy regime characterized by

e(p) := p°A* /Ao < 1
Can expand UV/IR mixing terms as
6-2?21\31\70/04 ~ Z ame(p)™

m=>0

Avoids pathological phenomena appearing e.g. when
A — oo and Apnce fixed

Expansion in 3 small parameters:

raat Y [awo (o))

n,l,k>0

8/17
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Effective NC gauge theory action

P.|p) = ip.|p), with P, = —ié’;,/l (X7, ]

(qlp) = Tr(|p){(g|) = Trap (e~ wX"ePuX")y = (27A%)26%(p — q)

1.3 5% .. kél i X —4 ~uv
[esz’ ele] — 927 <in <7> e (k+1)X 7 m(2)|p> _ ANLLCGM pﬂpy|p>
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Effective NC gauge theory action

P.|p) = ip.|p), with P, = —i, X", ]
(qlp) = Tr(|p)(q|) = Tra(e™*wX"ePuX™y = (27A%,5)25%(p — q)

1.3 5% .. kél i X —4 ~uv
[eZkX, ele] — 927 <in <7> e (k+1)X 7 mg|p> _ ANALCGM pﬂpy|p>

And can now compute terms of Duhamel expansion order by order:

©.@) /
ANc

/daTr(Ve ole(,)e A3

0

1
T==
2

©.@)

1 Vi ! THA2 / 2 Ajl\r
— Z/da/dt' Tr(Ve_t Doy e—(a—t )l%) aAE 4
0

0
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Gauge invar. of effective NCGFT

Adding up first 3 order contributions leads to the following order A* terms:

AYTrl . .
FA4 (A7 SO,p) : 16A4 / \/_ IBDO&SO D,ngz
NC

(27)°
——A o (0" F, 0P Fyp 4 (077 Fpor)(FOFD))

— 20"* F,0g*P 8, 0" 0pp; + 5(9_“”FW)9“5 05" Dapi

+ h.o.)

- These terms are manifestly gauge invariant
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Predictive power of vacuum

Free contribution:

_ 1 /d_a _ap?_ANg _A4Tr]l dx
a =35 Jang VY
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Effective matrix model action

consider I'p[X] = TrL (X*/L), L =A/A%;

e Commutators correspond to derivative operators for gauge fields

e | eading term of eff. action can be written in terms of products of

J¢ 1= i0%g, = [X* X,], TrJ=J%=0
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Effective matrix model action

consider I'p[X] = TrL (X*/L), L =A/A%;

e Commutators correspond to derivative operators for gauge fields

e | eading term of eff. action can be written in terms of products of

J¢ 1= i0%g, = [X* X,], TrJ=J%=0

C> Most general single-trace form of effective potential
+ Input from free contribution to the effective action:

['p[X] = TrV(X) + h.o.,

Il Th 1 [ d*z
e ZTI(\/—TrJ4+ %(Trﬂp) 8 (27r)2A [@)Vo
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SO(D) invar. of generalized MM

‘ Can reproduce gauge sector of induced result by a
semi-classical analysis with vanishing embedding fields:

1 P

\/%(TI’JQ)Z — TrJ4 |54i—0 2

1 1 =
1+ —0""F,, + —(6F)?
(1 dowr + Lo

b= 78 nfa) 4
+7(OF)(FOFG) + O(F ))
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SO(D) invar. of generalized MM

‘ Can reproduce gauge sector of induced result by a
semi-classical analysis with vanishing embedding fields:

1 P

\/%(TI’JQ)Z — TrJ4 |54i—0 2

1 1 =
1+ —0""F,, + —(6F)?
(1 Yowr Lo

b= 78 nfa) 4
+7(OF)(FOFG) + O(F ))

‘ Can be further generalized to include curvature terms.

/(2 )2 \/—A(CU) (R"_ (A Ce_o'e,upe’r]OéR’upna _4R) _|_C,a'u0-8’u0'>
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Bosonic action

Sp = —Tr ([ X%, X[ X, Xp)])
e Employ background field method: X“ — X“ +Y*

e Effective action in X°: keep only parts quadratic in Y

e Need to fix gauge for Y and add ghosts
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Bosonic action

Sp = —Tr ([ X%, X[ X, Xp)])
e Employ background field method: X — X% +Y*

e Effective action in X°: keep only parts quadratic in Y

e Need to fix gauge for Y and add ghosts
ng + Sghost = —1r ([Xaa Ya][Xb7 Y;D] I ZE[XCL7 [XCL7 C]])

=)

leads to quadratic action:
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Non-Abelian sector

background corresponding to N coinciding branes:
X*=X%1y+ A%, €4 RSU(N), O = QW1 4+ F)\

typical vertex term in the loop integral now looks like:
[J,—_-gb(kl)eile)\a’ fﬁ(kZ)eing)\B]

— —isin (B15R) P2 (k) £ ket X (30, 0%)

k10k .
—|—COS< 12 2) ng(kl)fﬁ(kZ)GZ(k1+k2)X[)\oz’)\5]
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Non-Abelian sector

background corresponding to N coinciding branes:
X*=X%1y+ A%, €4 RSU(N), O = Oy + Fob)\«

typical vertex term in the loop integral now looks like:
[ng(kl)eile)\a’ fﬁ(kZ)eikzX)\B]

— —isin (B15R) P2 (k) £ ket X (30, 0%)

k10k .
—|—COS( 12 2) ng(kl)fﬂ(kZ)GZ(k1+k2)X[)\oz,)\5]

C> expect low-energy effective action to reduce to
N =4 SYM on general background M.

SUSY breaking: M = M* x K
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Spontaneous symm. breaking

Consider SU (V) broken down to SU(IN — 1) x U(1) through
scalar fields ¢* ~ X\ where ) is the generator of the unbroken U (1).
One-loop effective action agrees with expansion of the Dirac-
Born-Infeld (DBI) action for a D3-brane in the background of
N — 1 coinciding branes

4 |¢2‘2 ; 12 F,,

V] deta|),

(V=1
27T2A§1VC :

/2 - 1
27TA§1V o

Q

% — A S Js

N
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Conclusion

e Computed the effective fermion action, first
from NC field theory, then from the matrix
model point of view,

e SO(D) symmetry is preserved,

e Need to complete the discussion of the
bosonic action and the non-Abelian sector
(work In progress).
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