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Outline

I.Introduction:

e YM matrix models
e |IKKT Model

II.Induced fermion action

eas NCGFT
e as generalized matrix model
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Matrix models of Yang-Mills type

Sy = —Tr[ X%, XX XNaenbd
X% Herm. matrices on H, and 74 is D-dim. flat metric

X = (X+,®), p=1,...,2n, i =1,...,D — 2n,
so that ®*(X) ~ ¢*(x) define embedding M?" «— RP
G (1) = 0,2%0,2°n4p (in semi-classical limit)
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so that ®*(X) ~ ¢*(x) define embedding M?" «— RP
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M?2" endowed with a Poisson structure
—i| XH, XY ~ {aH, 2"} = 0#Y (x) = “effective” metric

\/det 0,0
GHY — G_GH'LLPQVJQPO- _ _(\72),1;9,01/7 S
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Matrix models of Yang-Mills type

Sy m = —Tr[ X%, XX, X acbd

X% Herm. matrices on H, and 74 is D-dim. flat metric

X = (X+,®), p=1,...,2n, i =1,...,D — 2n,
so that ®*(X) ~ ¢*(x) define embedding M?" «— RP

Guv(T) =

Q@"’&,xbnab

(in semi-classical limit)

M?2" endowed with a Poisson structure
—i| XH, XY ~ {aH, 2"} = 0#Y (x) = “effective” metric

\/det 0,0
GHY — e—ae,upez/agpa _ _(jQ)/pJ,gpI/ : e °

—Tr[ X, B][X,, D] ~ / d*z\/det 01 01 0P 0,20, 340, $Oy b
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- AR

Matrix models and gravity

define projectors on the tangential /normal bundle of M C RP as
n
P = g"" 0,20, 2°

ab __ _ab ab
7DN - _PT 9
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A

Matrix models and gravity

define projectors on the tangential /normal bundle of M C RP as

n

Characteristic equation for 2n = 4:

(T2, + G2, + (T, =0

2n = 4: special class of geometries where G, = g,,,
ie. ©® = %«9;&@3“ A dx¥ *O = +70 = 7% =—1
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NCGFT coupled to gravity

e add U(N) valued gauge fields: XH = XH 4 A*
=  [X* XY] ~ (1 + APD,)0M + i FH

e Effective matrix model action then describes gauge
fields in a gravitational background
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NCGFT coupled to gravity

e add U(N) valued gauge fields: XH = XH 4 A*
=  [X* XY] ~ (1 + APD,)0M + i FH

e Effective matrix model action then describes gauge
fields in a gravitational background

e However, the U(1) and SU(N) subsectors play very
different roles: U(1) purely gravitational

) non-commutative U(N) gauge field theory
describes SU(N) fields coupled to gravity

> alternative interpretation of UV/IR mixing
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Introducing the IKKT model
Skt = Tr ([X%, X°|[Xa, Xo] + ¥7,[X 7, ¥])
DV = v, [ X, ¥], {7a: 1} = 2nas

. 1

IKKT matrix model is supersymmetric and expected to be
renormalizable - cf. Nucl.Phys. B498 (1997) 467.

Majorana-Weyl spinor ¥ = CW?
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Introducing the IKKT model

Skt = Tr ([X%, X°|[Xa, Xo] + ¥7,[X 7, ¥])
lﬂ\Ij -= fya[Xavqj]a {Vaaf)/b} :2770,13

. 1

IKKT matrix model is supersymmetric and expected to be
renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor ¥ = CU’ | is invariant under SUSY:
)
4
50 = ¢, 52 X% =0

O = [X“,Xb] Ya, Y€, ST X% = 1€y
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Introducing the IKKT model
Skt = Tr ([X%, X°|[Xa, Xo] + ¥7,[X 7, ¥])
DV = v, [ X, ¥], {Va, W} = 2nab

. 1

IKKT matrix model is supersymmetric and expected to be
renormalizable - cf. Nucl.Phys. B498 (1997) 467.

Majorana-Weyl spinor ¥ = CU’ | is invariant under SUSY:

510 = i[X“,Xb] Yo, Yoles 01X = iey W
520 = ¢, 52 X% =0
Further symmetries:
X* U txU, v U loU, UcU(H), gauge inv.
X% 5 A(g)eX?, U, — 7(g)2 Vg, g € SO(D), rotations,
X —= X4 "1, c" eR, translations
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IKKT model as TOE?

Sikxt = Tr ([X%, X°|[ X, Xp] + Uv,[X 7, ¥])

e Originially proposed as non-perturbative definition of type IIB
string theory,

e Seems to provide a good candidate for quantum gravity and

other fundamental interactions,
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IKKT model as TOE?

Sikxt = Tr ([X%, X°|[ X, Xp] + Uv,[X 7, ¥])

Originially proposed as non-perturbative definition of type IIB
string theory,

Seems to provide a good candidate for qguantum gravity and

other fundamental interactions,

Here, we consider general NC brane configurations and their
effective gravity in the matrix model,

assume soft breaking of SUSY below some scale A and compute
the effective action using a Heatkernel expansion.
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The fermionic action
Sy = TrUT PU = Trwl~, [ X U]

e TIX] = /d\Ifd\IfTe_S‘I’ = (const.) exp (%Tr log(]ﬁ2)>

DU = y,[X %, [X, U] = (Do + V)W
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The fermionic action
Sy = TrUT PU = Trwl~, [ X U]

1
e TIX] = /d\Ifd\IfTe_S‘I’ = (const.) exp <§Tr log(]ﬁ2)>

DU = y,[X %, [X, U] = (Do + V)W

e Consider fermions coupled to NC background
e Matrices X?: perturbations around Moyal quantum plane
> introduce NCscale Ayo=e7

[(XH, XY =0 (blockdiagonal, constant)
XP = (KP4 A, §) = (X — 0% A, Ao
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Heatkernel expansion

lp(Q)\Ij c= 77/u/ [Xlua [va \Ij]] — _A]_\T%G'uy@uaqu
components of [ X, X?]:

[XH, XV] = i(0" + F*), (X", ¢'] = i0"" Dy’
Ve — —Hupgya(apAa — 05 Ap — i[AP’AU]) )
D,¢ = 0,0 +i[A,, P
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A WA A

Heatkernel expansion

ng\Ij = TNuv [X'Udv [Xy’ \Ij]] — —A&%é“”@ﬂ@yqj

components of [ X%, X?]:
X, X = (0 + F), X, §] = 0" D,
Vaw = —Q'upeya(apAa < aJAP o i[Ap’AU]) g
D,¢ = 0,¢ +i[A,, §]

Consider Duhamel expansion:

©.@)

—lTr/ da (e_o‘lpz = e—alD§> e—f}XS
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Small parameters of expansion

e |n contrast to previous work, we consider a ,,semi-
classical” low energy regime characterized by

e(p) := p?A° /Ay < 1
e Can expand UV/IR mixing terms as

€_p2A§L\,C/o¢ ~ Z CLmE(p)m
m>0

e Avoids pathological phenomena appearing e.g. when
A — oo and AN fixed
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Small parameters of expansion

e |n contrast to previous work, we consider a ,,semi-
classical” low energy regime characterized by

e(p) := p?A° /Ay < 1

e Can expand UV/IR mixing terms as
e P ANC/% N ae(p)™
m>0
e Avoids pathological phenomena appearing e.g. when
A — oo and Anc¢ fixed

e Expansion in 3 small parameters:

raat Y [awo (b))

n,l,k>0
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Specifying the Hilbert space

inner product: (U1, Us) = TrH\I!I\Ifg Afilvcf(z 2 \/_\I!J{\IJQ

P.|p) = ip.|p), with P, = —if, X", ]

(qlp) = Tr(|p)(q|) = Tra (e~ WX"ePuX")y = (27A%,)25%* (0 — q)




Specifying the Hilbert space
inner product: (U, ¥s) = TrH\IJT\IJQ = Ajlvcf@ E \/§ququ

Weyl quantization map: |[p) = eP+X" ¢ A
P.|p) = ip.|p), with P, = —if,, X", ]
(alp) = Tr(Ip)(gl) = Try(e " =>"e®rX") = (2mAX0)?6* (p — q)

v = [ Gy <2wA D) = [ 5o c>2 v(p) e

1.3 5% o kél i X —4 Auv
[GZkX’ eZlX} " <7> e lb?)’m — AN%JGM Pupbv|p)
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Effective NC gauge theory action

general matrix element: (Uy|V|W¥,)

And can now compute terms of Duhamel expansion order by order:

O
4

1 2 A
' = 5 /da Tr(Ve “P0)e™ el
0
1 / —t' Ip? —(a—t") Ip? _ANe
— da | dt Tr(Ve oVe 0)6 aA2 4,
0 0
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Effective NC gauge theory action

general matrix element: (Uy|V|W¥,)

And can now compute terms of Duhamel expansion order by order:

O
4

I = % /da Tr(Ve_O‘lp(Q))e_AofXg

0

i ]Od@jdt’ Tr (Ve ! Poyem (e S
:

0 0
E.qg. first order:
4
+ (9(14
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Gauge invar. of effective NCGFT

Together with 2" and 3™ order contributions, that leads to order A* terms:

A*Trl :
FA4(A7907P) / \/_( QBDQQOZDBSOZ

16A% - | (27)2

1 _ _
— S AN (0" Fuuf”" Fyp + (077 Foor)(FOF))
— 20"* F,0,9°P8, 0 0p0; + 5(9—“”1%/)90‘5 Opp" Do ps
+ h.o.)

@ These terms are manifestly gauge invariant
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Predictive power of vacuum

Free contribution:

N 4 4
_ da —alb AA2 A Tr]l/ d*x Ve
2 ! 8 (27)2

Along with general geometrical considerations,
this suffices to predict loop computations!
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Effective matrix model action

consider I'p [ X| = TrL (X*/L), L = A/A?\TC’

e Commutators correspond to derivative operators for gauge fields

e | eading term of effective action can be written in terms of products of

Jp :=10%ge = [X*, Xp], TrJ =J) =0
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Effective matrix model action

consider I'p [ X| = TrL (X*/L), L = A/A?VC

e Commutators correspond to derivative operators for gauge fields

e | eading term of effective action can be written in terms of products of

Jp :=10%ge = [X*, Xp], TrJ =J) =0
e Recall semi-classical characteristic equation
a 1 a — a
(TN — 5(TrJ?) (J*) ~ —Ane(@)(Pr)g

1
J? = S(TeJ?) J? ~ —Aje(@)J,  TrJ? ~ Age(2)(Gy),

P%b = g“”c‘?”a:a&/a:b :> Projector on tangential bundle
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Generalized matrix model

C> Most general single-trace form of effective potential;

L* —TrJ*+ %(TI‘JQ)2>
TrJ2’ (TrJ2)2

V(x)=Vv(

L 4
- <AX%($) (Gg) (G9)2>
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Generalized matrix model

C> Most general single-trace form of effective potential;
I* —TrJ*+ %(TI‘JQ)Q)
TrJ?2’ (TrJ?)?

V(X) = V(

L 4
- <Az?r‘é(af) (Gg) (G9)2>

The exact form can be determined from the free contribution to
the effective action introduced previously:

I'p[X] = TrV(X) + h.o.,

1 L= r dix
. ZTr(\/fmww é(Trﬂ)z) VA IR
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SO(D) invar. of generalized MM

C> Can now reproduce e.g. the gauge sector of the
iInduced result displayed previously, by a semi-
classical analysis with vanishing embedding fields:

1 Axc

V/%(TTJQ)Q——TFn]4 Bei=0 2

1~ 1 =
25, + Y

+i(9_F)(F9_F§) - O(F4)>

Effective action can be written as a generalized
matrix model with manifest SO(D) symmetry.
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Generalized MM & curvature

Generalizing the effective matrix model action to include
curvature terms porportional to A%

[ ] 1 i
[ | X]| = —=-Tr
4 4 1 2)2 4 1 -+
TI'J 2 (TI'J ) L2 £1()7 curv [X] e o o

SR i

(A*(2) - %AQ(x)A}\?C(a:)ElO, cure )
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Generalized MM & curvature

Generalizing the effective matrix model action to include
curvature terms porportional to A%

1 i
I'p| X | = ——Tr
. <\/ TrJ4 4+ 2(TrJ?)2 + L L10, e[ X] + - >
_ / Cé é;/): (A4(:z:) _ gAZ(x)A}@C(a;)zm,ww o )

example for G,W = Gy ©

Tr A2{X] L1 ~ / ( QW)Q\WA(;C) (R + (Rhoe 70"20™ Ry — AR)

+ c (9“0(%0)

Analogs of Seeley-de Witt coefficients corresponding to induced gravity.
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Outlook: bosonic action

Sp = —Tr ([X%, X[ Xa, Xp)])
e Employ background field method: X — X%+ Y*

e Effective action in X®: keep only parts quadratic in Y

e Need to fix gauge for Y and add ghosts
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Outlook: bosonic action

Sp = —Tr ([X%, X[ Xa, Xp)])
e Employ background field method: X — X%+ Y*

e Effective action in X®: keep only parts quadratic in Y

e Need to fix gauge for Y and add ghosts
ng —+ Sghost = —1Ir ([Xav Ya][Xba 1/;)] T QE[Xav [XCH C]])

:> leads to quadratic action:
Squad = 2Tr (Y*(O6 + 2i[0°, .])Y; + 2¢0c)
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Conclusion

e Computed the effective fermion action, first
from NC field theory, then from the matrix
model point of view,

e SO(D) symmetry is preserved,

e Need to discuss the bosonic action (work Iin
progress).
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