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1. Introduction

1.1. A brief history of Quantum Field Theory

Quantum electrodynamics was formulated about 1950, many years after Planck’s original
hypothesis (1901) that the electromagnetic field should be quantized. In subsequent years,
quantum field theories were studied extensively and one was finally lead to the “Standard
Model” of particle physics which describes elementary particles and their interactions in flat
space-time. Three such basic interactions are involved:

1. the electromagnetic field, whose gauge bosons are massless spin 1 “photons”,

2. the weak field, whose gauge bosons are the massive spin 1 W±, Z bosons,

3. and the strong field (QCD), whose gauge bosons are the (postulated) 8 massless spin
1 “gluons”.

The first two forces are described by the Weinberg-Salam electroweak model based on the
gauge group U(1) × SU(2), and the W±, Z bosons become massive due to spontaneous
symmetry breaking through the so-called Higgs mechanism. The strong force, on the other
hand is based on the gauge group SU(3) whose three (anti)charges are dubbed (anti)red,
(anti)green and (anti)blue, hence the term “chromo” (colour) in the models name.

Additionally, the elementary particles charged under these forces can be categorized into
three generations of quark-doublets and equally many generations of lepton doublets. Details
are given in the Table 1.1

Table 1.1.: The elementary particle zoo

1. generation 2. gen. 3. gen.

quark up (u) down (d) charm (c) strange (s) top (t) bottom (b)

charge +2
3 −1

3 +2
3 −1

3 +2
3 −1

3

mass 1.5-4MeV 4-8MeV 1.15-1.35GeV 80-130MeV 169-174GeV 4.1-4.4GeV

lepton electron e− el.-neutrino νe muon µ− µ-neutr. νµ tauon τ− τ -neutr. ντ
charge −1 0 −1 0 −1 0

mass 511keV < 3eV 105.66MeV < 100eV 1.777GeV < 30MeV

Many experiments, mostly particle accelerators, have verified the validity of the standard
model. The only unobserved particle to date is the Higgs particle for which the search is
ongoing. Furthermore, the standard model has known shortcomings: In its original form,
massless neutrinos are considered which meanwhile is known to be untrue. Neutrinos do
in fact have mass and according extensions to the standard model have been suggested.
Furthermore, one expects that at energies at/or beyond the TeV scale new physical effects
which are not covered by the standard model will appear.

Some important discoveries were:
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• the electron e− 1897 by J.J. Thomson,

• the anti-electron (or positron e+) 1932 by C.D. Anderson in cosmic radiation,

• and in the same year J. Chadwick discovered the neutron,

• the muon µ− 1936 by C.D. Anderson in cosmic rays,

• the W±, Z bosons (80/90GeV) in 1983 at CERN,

just to name a few.

History and overview of some particle accelerators.

1. Early 1930s: Cockroft-Walton linear accelerator at Cambridge, UK (0.7 MeV); and
Lawrence’s cyclotron at Berkley, USA (1.2 MeV);

2. further accelerators in the 1950s and after;

3. TEVATRON (Fermilab), p-p̄ collisions, 900 GeV, 1987-2011, discovered top-quark;

4. SLC (SLAC, Stanford), e−-e+ collisions, 50 GeV, 1989-1998;

5. HERA (DESY, Hamburg) e at 30 GeV, p at 820 GeV, 1992-2007;

6. LEP2 (CERN), e−, e+, 81 GeV, 1996-2000;

7. Vienna Environmental Research Accelerator (VERA), 3 MV tandem accelerator, for
Accelerator Mass Spectrometry (AMS), 1996-present;

8. PEP-II (SLAC, Stanford), e−, e+, 9 GeV, 1999-2008,

9. Relativistic Heavy Ion Collider “RHIC” (Brookhaven National Laboratory, New York),
2000-present;

10. LHC (CERN), p, 7 TeV, 2009-present.

Concepts of renormalization/regularization.
Charged particles receive a “self-interaction”, i.e. they feel their own field. “Naked

charges” can never be measured, only the effective charge including self-interaction of the
particle. In fact, the value is energy dependent (RG-flow) as described by the so-called
β-function. For example, at low energies the fine-structure constant of QED is given by

α =
e2

4πε0~c
≈ 1

137
, (1.1)

but at high energies α becomes larger, as can be measured in particle accelerators. This
can be interpreted by the following gedanken-experiment: vacuum fluctuations constantly
lead to the production and annihilation of (virtual) particles and antiparticles. Near a
charged particle, say an electron, these will shield some portion of the charge leading e.g.
to the value of 1/137 at low energies. Measuring at high energies means we can detect the
charge of that electron at closer distance and less shielding, hence the increased value. In
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fact, being interpreted as a point particle, the beta-function diverges as the energy goes to
infinity. However, this picture is not expected to hold at arbitrarily high energies.

On the other hand, there are also quantum field theories, where the beta-function behaves
in the opposite way: In QCD, for example, the coupling is strong at low energies and becomes
weak at high energies. (Such theories are called asymptotically free.) The mathematical
reason is that quantumchromodynamics QCD is a non-Abelian gauge theory, meaning its
gauge bosons are charged and interact with each other. Therefore, the naive “screening”
picture above does not apply here. In fact, so-called “confinement” prevents production of
charged particles.

These ideas will be made more explicit in Section 3.

Notation.
Throughout these lecture notes, natural units as described in Appendix A.2 are used.

1.2. Classical theory

1.2.1. From particle mechanics to field theory

Consider a point particle of mass m whose position at time t is x(t), and which is driven by
a force F = V ′(x). Its equation of motion (i.e. Newton’s second law) is then given by

m
d2x

dt2
+
dV

dx
= 0 . (1.2)

A way of deriving this equation is by the principle of least action. The action S in the above
case is given by

S =

t2∫
t1

dtL , L =
m

2

(
dx

dt

)2

− V (x) , (1.3)

where L is called the Lagrangian, and the integral in the action is taken over a path from
t1 to t2. The principal of least action states that the path the particle actually takes (from
the infinitely many possible ones) is the one for which S is a minimum. It can be derived
by varying S and requiring this variation to vanish, i.e.

δS =

t2∫
t1

dt

(
m
dx

dt

dδx

dt
− dV

dx
δx

)
= 0 . (1.4)

Integrating the first term by parts keeping in mind that the variation is zero at the end
points t1,2, we find

t2∫
t1

dt

(
m
d2x

dt2
+
dV

dx

)
δx = 0 , (1.5)

which for arbitrary variations δx implies Eqn. (1.2) above. The above can of course readily be
extended to a system of particles, or a more complicated mechanical problem with n degrees
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of freedom qi. The Lagrangian then becomes L(qi, q̇i). If we push this generalization further,
say to an infinite number of degrees of freedom, we replace the qi(t) with fields φ(xµ) =
φ(t, x, y, z) where the index i is replaced by continuous variables x, y, z. Furthermore, we
define the Lagrangian density L by L =

∫
d3xL, and a general field theory action hence is

written as

S =

∫
d4xL(φi(x), ∂µφi(x)) (1.6)

depending on fields various fields φi (which might have additional indices) and their gradi-
ents. We furthermore assume “natural boundary conditions”, i.e. that these fields vanish
sufficiently fast at infinity to justify integration by parts. Variation of this action leads to

δS =

∫
d4x

(
∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

)
δφi , (1.7)

implying the generalized Euler-Lagrange equations

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

= 0 . (1.8)

1.2.2. Maxwell fields

In the case of photons, the action is given by

S =

∫
d4x

(
−1

4
FµνF

µν + jµA
µ

)
, (1.9)

where Aµ is the vector potential, jµ denotes an (external) current density and

Fµν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 , (1.10)

is the electromagnetic field strength tensor in vacuum. Furthermore, we use the Lorentz
metric ηµν = (+,−,−,−) for pulling indices up and down, and consider natural units where
c = ~ = 1 (cf. Appendix A.2). Varying the action (1.9) with respect to the Aµ leads to the
equations of motion1

∂νF
µν = ∂ν∂

νAµ − ∂µ(∂νA
ν) = −jµ . (1.11)

These are in fact the inhomogeneous Maxwell equations, i.e. for µ = 0 one has with ~E =

−∇A0 − ∂ ~A
∂t and ρ = j0:

div ~E = ρ , (1.12)

whereas using ~B = rot ~A the µ = 1, 2, 3 components yield

rot ~B − ∂ ~E

∂t
= ~j . (1.13)

1Note, that these imply current conservation since 0 = ∂µ∂νF
µν = ∂µj

µ.
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The homogeneous Maxwell equations follow as an identity directly from the definition of the
antisymmetric field strength tensor (1.10), i.e.

∂νF̃
µν = ∂ν

1

2
εµνρσFρσ = εµνρσ∂ν∂ρAσ = 0 . (1.14)

The µ = 0 and µ = 1, 2, 3 components correspond to

div ~B = 0 and rot ~E +
∂ ~B

∂t
= 0 , (1.15)

respectively.

Exercise 1 Derive the Maxwell equations starting from (1.11) and (1.14).

The action (1.9) as well as the field strength tensor Fµν are invariant under the “gauge
transformation”

A′µ = Aµ + ∂µλ , (1.16)

(up to a surface term provided the current density is conserved, ∂µj
µ = 0). This gauge

freedom can be fixed by demanding a gauge condition, such as e.g. the Lorenz condition
∂µA

µ = 0.

1.2.3. Scalar field theory

Let us now consider the simplest field theory, which represents a good toy model in order to
learn general properties of quantum field theory. We start with a free field whose classical
action is given by

Sφ =

∫
d4x

(
−1

2
∂µφ∂

µφ+
1

2
m2φ2 − jφ

)
. (1.17)

The e.o.m. follow as (
� +m2

)
φ(x) = j(x) . (1.18)

A solution can then be found by employing the Green function method where

φ(x) = φ0(x) +

∫
d4xG(x, x′)j(x′) ,(

� +m2
)
G(x, x′) = δ4(x− x′) , (1.19)

where φ0 solves the homogeneous equation and is chosen in such a way that φ satisfies the
boundary conditions. Making use of translational invariance, the first line of (1.19) can be
replaced by an algebraic one by making a Fourier transformation leading to

G(x− x′) = −
∫

d4p

(2π)4

eip(x−x′)

p2 −m2
. (1.20)
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Obviously one has to deal with the zero of the expression p2
0 − ~p2 − m2 by prescribing a

slightly deformed contour of integration. This in turn leads to the definition of the retarded
and advanced Green functions, as follows:

G ret
adv

(x− x′) = −
∫

d4p

(2π)4

eip(x−x′)

2ωp

(
1

p0 − ωp ± iε
− 1

p0 + ωp ± iε

)
=

Θ(±(x0 − x′0))

(2π)3

∫
d3p

ωp
ei~p(~x−~x′) sin

(
ωp(x0 − x′0)

)
, (1.21)

where ωp =
√
~p2 +m2.

In order to find the homogeneous solution φ0 we once more employ a Fourier ansatz leading
to

φ0(x) =

∫
d4p

(2π)3
eipxδ(p2 −m2)φ′(p)

=
1

(2π)3

∫
d3p

2ωp

(
φ+(~p)eipx + φ−(~p)e−ipx

)
, (1.22)

where φ±(~p) := φ′(±ωp,±~p).

1.2.4. Dirac fields

The Schrödinger equation for e.g. an electron wave function ψ is given by

i
∂ψ

∂t
= Hψ . (1.23)

In order to ensure a symmetry between space and time (as required by special relativity),
Dirac postulated the Hamiltonian for a free electron to be of the form

H = −i~α~∇+ βm , (1.24)

so that (
i
∂

∂t
+ i~α~∇− βm

)
ψ = 0 , (1.25)

where αi and β must be matrices satisfying a Clifford algebra, since the solutions to the
above equation should also be solutions to the Klein-Gordon equation leading to(

i
∂

∂t
− i~α~∇+ βm

)(
i
∂

∂t
+ i~α~∇− βm

)
ψ

=

(
− ∂2

∂t2
+

1

2
{αi, αj} ∂i∂j + im {αi, β} ∂i − β2m2

)
ψ

= 0 , (1.26)

where

{αi, αj} = 2δij , β2 = 1 , {αi, β} = 0 . (1.27)
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Though not unique, a possible representation is the so-called chiral representation where

αi =

(
−σi 0

0 σi

)
, β =

(
0 12

12 0

)
, (1.28)

and σi are the usual Pauli matrices. We may now rewrite Eqn. (1.25) as

(iγµ∂µ −m)ψ = β

(
i
∂

∂t
+ i~α~∇− βm

)
ψ = 0 , (1.29)

where γ0 = β and γi = βαi and {γµ, γν} = 2ηµν , µ, ν ∈ {0, 1, 2, 3}. The Lagrangian must
be Hermitian and scalar leading to the above e.o.m., and hence

L = ψ̄ (iγµ∂µ −m)ψ , (1.30)

where ψ̄ = ψ†γ0. Another useful matrix is γ5 ≡ iγ0γ1γ2γ3 which in the chiral representation
is given by

γ5 =

(
−12 0

0 12

)
. (1.31)

The matrices 1
2

(
14 ± γ5

)
are projectors giving the right and left handed parts of a Dirac

spinor, i.e.

1

2

(
14 − γ5

)
ψ =

(
ψL
0

)
,

1

2

(
14 + γ5

)
ψ =

(
0
ψR

)
. (1.32)

The Dirac equation describes particles with intrinsic angular momentum ~
2σ and intrinsic

magnetic moment q~
2mσ if the particle carries charge q. Furthermore, there exist negative

energy solutions which Dirac interpreted as antiparticles. This, of course at the time was
a rather bold claim, which however was experimentally confirmed later when the positron
was discovered in cosmic radiation in 1932.

1.3. The role of symmetries in physics

Noether’s theorem states that every symmetry of the action leads to a conserved quantity.
For example, translation symmetry leads to energy-momentum conservation. Derivations of
this theorem may be found in many textbooks, and here we only briefly review the following
example considering invariance under time-translation: Using the Euler-Lagrange e.o.m. we
get

dL(qi, q̇i)

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i =

(
d

dt

∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

=
d

dt

(
∂L

∂q̇i
q̇i

)
. (1.33)

Hence

d

dt

(
∂L

∂q̇i
q̇i − L

)
= 0 , (1.34)

and the energy of the system

E =

(
∂L

∂q̇i
q̇i − L

)
(1.35)

remains constant during the motion.
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Energy-momentum tensor of a scalar field.
Consider a space-time displacement xµ → xµ + δa, where δa is independent from x. By

computing the change in the Lagrangian L of a scalar field φ theory corresponding to this
displacement, one easily computes the equations expressing conservation of linear momentum
and energy: Since L does not explicitly depend on x, we have

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) , δφ = (∂νφ)δaν . (1.36)

Using the fact that [δ, ∂µ] = 0 and the Euler-Lagrange equations of motion (1.8), we can
rewrite this as

δL = ∂µ

(
∂L

∂(∂µφ)
∂νφ

)
δaν . (1.37)

Alternatively, we may derive δL directly as

δL =
∂L
∂xµ

δaµ . (1.38)

Since the δaν are arbitrary, it hence follows that

∂µT
µ
ν = 0 , Tµν =

(
∂L

∂(∂µφ)
∂νφ− δµνL

)
, (1.39)

where Tµν is called the energy-momentum tensor. The component T 0
0 =

(
∂L
∂(φ̇)

φ̇− L
)

corre-

sponds to the energy density of the field — cf. Eqn. (1.35). Observe furthermore, that the
0 component of Eqn. (1.39),

∂

∂t
T 0

0 + ~∇~T0 = 0 , (1.40)

expresses local conservation of energy, and using the divergence theorem integration over all
space leads to

∂

∂t

∫
d3xT 0

0 = 0 , (1.41)

assuming the field vanishes at large distances. Similarly, one derives

∂

∂t
Pi = 0 , Pi =

∫
d3xT 0

i , (1.42)

expressing conservation of momentum Pi.
Finally, we should mention, that symmetries which are broken at the quantum level lead

to so-called anomalies. (For example, cancellations of anomalies leads to requirement that
number of quark and lepton generations match.)
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2. Path integral methods

2.1. Path integral formulation in quantum mechanics

We start by recapitulating some basic formulae from quantum mechanics, for simplicity
consider a one dimensional system, i.e. with one pair of conjugate operators X and P
satisfying [X,P ] = i. The eigenstates of the coordinate operator satisfy X|x〉 = x|x〉 and
define an orthonormal basis, i.e.

〈x |x′〉 = δ(x− x′) ,
∫
dx|x〉〈x| = 1 . (2.1)

Similarly, the eigenstates of the momentum operator satisfy P |p〉 = p|p〉 and

〈p |p′〉 = δ(p− p′) ,
∫
dp |p〉〈p| = 1 . (2.2)

The transformation operator between the two basis is given by

〈p |x〉 =
1√
2π
e−ipx = 〈x |p〉∗ , (2.3)

and hence the Fourier transform of functions is defined as

f(x) = 〈x |f〉 =

∫
dp 〈x |p〉〈p |f〉 =

1√
2π

∫
dp eipxf(p) . (2.4)

The coordinate states in the Heisenberg picture are related to the Schrödinger states as
|x, t〉H = eiHt|x〉. Orthonormality and completeness hold for the Heisenberg states only for
equal times, as can be easily checked.

In general, when promoting a classical system to a quantum system, implying that ob-
servables are promoted to operators, it is not clear what has to be done with products of
non-commuting operators: an ordering prescription, such as ‘normal ordering’ and ‘Weyl
ordering’ is required. Here we shall consider the latter, also known as ‘symmetric ordering’.

We may now calculate the transition amplitude U(tf , xf ; ti, xi) =H 〈xf , tf | xi, ti〉H for
tf > ti in the Heisenberg picture. Dividing the time interval between the initial and the
final time into N equal segments of infinitesimal length ε and introducing complete sets of
coordinate basis states for every intermediate time point, we obtain

U(tf , xf ; ti, xi) = lim
ε→0
N→∞

∫
dx1 · · · dxN−1 H〈xf , tf |xN−1, tN−1〉H

× H 〈xN−1, tN−1 |xN−2, tN−2〉H · · · H〈x1, t1 |xi, ti〉H (2.5)

with

H〈xk, tk |xk−1, tk−1〉H = 〈xk|e−i(tk−tk−1)H |xk−1〉 =

∫
dpk
2π

e
ipk(xk−xk−1)−iεH

(
xk+xk−1

2
,pk

)
,

(2.6)
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using Weyl ordering. Hence, identifying x0 = xi and xN = xf , we arrive at

U(tf , xf ; ti, xi) = lim
ε→0
N→∞

∫
dx1 · · · dxN−1

dp1 · · · dpN
(2π)N

e
iε
∑N
k=1

(
pk

(
xk−xk−1

ε

)
−H

(
xk+xk−1

2
,pk

))
.

(2.7)

When specializing to the class of Hamiltonians which are quadratic in the momentum vari-

ables, e.g. H(x, p) = p2

2m + V (x), the momentum integrals above become Gaussian, i.e.
particularly simple:∫

dpk
2π

e
−iε

(
p2k
2m
−
p(xk−xk−1)

ε

)
=

√
m

2πiε
e

iεm
2

(
xk−xk−1

ε

)2
, (2.8)

hence leading to Feynman’s path integral for the transition amplitude in quantum mechanics

U(tf , xf ; ti, xi) = lim
ε→0
N→∞

( m

2πiε

)N/2 ∫
dx1 · · · dxN−1e

iε
∑N
k=1

(
m
2

(
xk−xk−1

ε

)2
−V
(
xk+xk−1

2

))

= N
∫
Dx exp

(
i

∫ tf

ti

dt
(m

2
ẋ2 − V (x)

))
= N

∫
Dx eiS[x] , (2.9)

where N is a constant and S[x] is the action. Here, the end points are held fixed and only
the intermediate points are integrated over the entire space, which means that the transition
amplitude is the sum over all paths connecting the two points weighted by the factor eiS[x].
The dominant contribution is the classical one, namely arising from paths which extremize
the phase factor, i.e. the ones satisfying δS[x]

δx(t) .

Exercise 2 Show that for a free particle, the transition amplitude (2.9) computes to

U(tf , xf ; ti, xi) =

√
m

2πi(tf − ti)
eiS[xcl] ,

lim
tf→ti

U(tf , xf ; ti, xi) = δ (xf − xi) , (2.10)

where xcl denotes the classical trajectory, and that it solves the Schrödinger equation!

Exercise 3 Repeat the calculation for the harmonic oscillator!

2.2. Generating Functional

Lets us evaluate the matrix element of a product of operators of the form:

H〈xf , tf |XH(t1)XH(t2)|xi, ti〉H =

∫
dx1dx2x1x2 H〈xf , tf |x1, t1〉H H〈x1, t1 |x2, t2〉H×

×H 〈x2, t2 |xi, ti〉H

= N
∫
Dxx(t1)x(t2)eiS[x] , (2.11)
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assuming t1 > t2 on the l.h.s. Since x(t1) and x(t2) commute, the path integral on the r.h.s.
automatically incorporates time ordering. A similar derivation can be done for time ordered
correlation functions between physical states (cf. [2], p.61).

By introducing the modified action

S[x, J ] = S[x] +

tf∫
ti

dt x(t)J(t) ,

〈xf , tf |xi, ti〉J = N
∫
Dx eiS[x.J ] = 〈xf , tf |Tei

∫
dtX(t)J(t)|xi, ti〉 , (2.12)

we my rewrite the result above as

N
∫
Dxx(t1)x(t2)eiS[x] =

1

i2
δ2〈xf , tf |xi, ti〉J
δJ(t1)δJ(t2)

∣∣∣∣∣
J=0

, (2.13)

which justifies the name “generating functional” for 〈xf , tf |xi, ti〉J .

2.3. Path integral for Grassmann variables

Let θi with i = 1, 2, . . . , n be a set of Grassmann variables satisfying {θi, θj} = 0. This
implies that if f(θ) is a function of just one Grassmann variable it has the Taylor expansion

f(θ) = a+ bθ (2.14)

since θ2 = 0.
A left derivative for Grassmann variables yields

∂

∂θi
(θjθk) = δijθk − δikθj . (2.15)

Notice also that
{
∂
∂θi
, ∂∂θj

}
= 0, i.e. are nilpotent as well. Hence,

{
∂
∂θi
, θj

}
= δij .

The notion of integration can also be generalized to Grassmann variables. Considering
that the integral of a total derivative should vanish if we ignore surface terms and that
a definite integral, being independent of the variable, must give zero upon differentiation.
Since differentiation with respect to a Grassmann variable is nilpotent, it satisfies these
properties and integration with respect to Grassmann variables can be naturally identified
with differentiation, i.e. ∫

dθf(θ) =
∂f(θ)

∂θ
. (2.16)

Therefore ∫
dθ = 0 ,

∫
dθθ = 1 , (2.17)

and ∫
dθf(θ) = a

∫
dθ′f(θ′/a) (2.18)
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for θ′ = aθ. Generalizing to several Grassmann variables we find∫
dθ1 . . . dθnf(θi) = (det aij)

∫
dθ′1 . . . dθ

′
nf
(
a−1
ij θ
′
j

)
(2.19)

for θ′i = aijθj and (det aij) 6= 0. Furthermore, a delta function can be defined as

δ(θ) = θ = −i

∫
dζeiζθ , (2.20)

where ζ is another Grassmann variable, since∫
dθδ(θ) = 1 ,

∫
dθδ(θ)f(θ) = f(0) . (2.21)

Finally, a Gaussian integral for Grassmann variables is given by∫ ∏
i,j

dθ∗i θje
−(θ∗iMijθj+c

∗
i θi+θ

∗
i ci) = detMij

∫ ∏
i,j

dθ∗i θje
−θ∗i

′θ′i+c
∗
iM
−1
ij cj

= const. detMij e
c∗iM

−1
ij cj , (2.22)

assuming θ∗i and θi as well as c∗i and ci are independent Grassmann variables.

Exercise 4 Consider the following action for the fermionic harmonic oscillator:

S[ψ, ψ̄, η, η̄] = S[ψ, ψ̄] +

∫
dt(η̄ψ + ψ̄η) ,

S[ψ, ψ̄] =

∫
dt

(
i

2
(ψ̄ψ̇ − ˙̄ψψ)− ω

2

[
ψ̄, ψ

])
, (2.23)

and compute the free fermion path integral!

2.4. Path integral for a relativistic scalar field theory

Let us consider the action of φ4 theory

S[φ] =

∫
d4xL(φ, ∂µφ) ,

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4 , (2.24)

and introduce appropriate source through the couplings

S[φ, J ] = S[φ] +

∫
d4xJφ (2.25)

leading to the e.o.m.

δS[φ, J ]

δφ(x)
= ∂µ∂

µφ+m2φ+
λ

3!
φ3 − J = 0 (2.26)
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Furthermore, considering the limits ti → −∞ and tf → +∞, the vacuum to vacuum tran-
sition amplitude is given by

Z[J ] = 〈0 |0〉J = N
∫
DφeiS[φ,J ] . (2.27)

For λ = 0 we easily derive

Z0[J ] = N
∫
DφeiS0[φ,J ]

= N
(
det(� +m2)

)− 1
2 e−

i
2

∫
d4xd4x′J(x)G(x−x′)J(x′)

= Z0[0]e−
i
2

∫
d4xd4x′J(x)G(x−x′)J(x′) , (2.28)

where the field φ was integrated out by shift and quadratic completion, S0[φ] = S[φ]
∣∣
λ=0

,
and G(x − x′) is the Feynman propagator resp. the Green function we encountered earlier
in Eqn. (1.20). It is therefore straightforward to see that the normalized time ordered
correlation function

〈0|Tφ(x)φ(x′)|0〉
∣∣∣
λ=0

=
1

i2Z0[J ]

δ2Z0[J ]

δJ(x)δJ(x′)

∣∣∣∣∣
J=0

= iG(x− x′) . (2.29)

The path integral Z[J ] of the full theory with λ 6= 0 cannot be evaluated in a closed form,
but for weak coupling λ one can compute it perturbatively. By making the replacement
φ(x)→ δ

δJ(x) in the interaction part of the action, we can derive the following power series
in the coupling λ:

Z[J ] =

(
e
− iλ

4!

∫
d4x
(
−i δ

δJ(x)

)4)
N
∫
DφeiS0[φ,J ] =

(
e
− iλ

4!

∫
d4x
(
−i δ

δJ(x)

)4)
Z0[J ]

=

[
1− iλ

4!

∫
d4x

δ4

δJ4(x)
+

1

2!

(
− iλ

4!

)2 ∫
d4x

δ4

δJ4(x)

∫
d4x′

δ4

δJ4(x′)
+ . . .

]
Z0[J ]

= Z0[0]

[
1− iλ

4!

∫
d4x

δ4

δJ4(x)
+ . . .

]
e−

i
2

∫
d4x1d4x2J(x1)G(x1−x2)J(x2) . (2.30)

Let us compute the 2-point correlation function to linear order in λ. For this we need

Z[J ] = Z0[0]e−
i
2

∫
d4x1d4x2J(x1)G(x1−x2)J(x2)

[
1 +

iλ

8
GF (0)GF (0)

∫
d4x

+
λ

4
GF (0)

∫
d4xd4x3d

4x4GF (x− x3)J(x3)GF (x− x4)J(x4)

− iλ

4!

∫
d4xd4x3−6G(x− x3)J(x3)G(x− x4)J(x4)G(x− x5)J(x5)G(x− x6)J(x6)

]
+O(λ2) , (2.31)

which follows from Eqn. (2.30) by explicit computation while consistently keeping only terms
linear in λ. Notice that

Z[0] = Z0[0]

(
1 +

iλ

8
GF (0)GF (0)

∫
d4x

)
+O(λ2) , (2.32)
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is a divergent quantity which can be absorbed in the normalization N . Continuing our
computation of the two-point function to order λ, we arrive at

〈0|Tφ(x1)φ(x2)|0〉 =
1

i2Z(J)

δ2Z(J)

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

= iGF (x1 − x2)− λ

2
GF (0)

∫
d4xGF (x− x1)GF (x− x2) +O(λ2) .

(2.33)

Similarly, we may compute the lowest order quantum correction to the 4-point function,
which however involves numerous terms. Therefore, a systematic procedure keeping track of
the perturbative expansion is helpful. Such a procedure is given by the so-called Feynman
rules:

x1 x2 iGF (x1 − x2)

x2

x1

x3

x4

V (x1, x2, x3, x4) = i
δ4S[φ]

δφ(x1)δφ(x2)δφ(x3)δφ(x4)

= −iλ

∫
d4xδ4(x− x1)δ4(x− x2)δ4(x− x3)δ4(x− x4) .

(2.34)

With these rules, supplemented by the rules that we must integrate over intermediate points
in a graph and that if the internal part of a diagram has a symmetry one must divide by
that symmetry factor1, we find for the simplest 2-point diagram

x1 x2y1 y2

y3 y4

1

2

∫
d4y1−4iG(x1 − y1)iG(y2 − x2)iG(y3 − y4)V (y1, y2, y3, y4)

= −λ
2
G(0)

∫
d4yG(x1 − y)G(y − x2) . (2.35)

Hence, we see that the result of Eqn. (2.33) can be written diagrammatically as a simple
sum:

〈0|Tφ(x1)φ(x2)|0〉 = +
x1 x2

x1 x2

+ . . .

1In order to compute the correct factor for a certain type of Feynman graph, one first counts the number of
possibilities to connect the external lines to the vertices of a “pre-graph”. That number is then multiplied
by the number of possibilities to connect the vertices among each other, and the result is divided by 4! for
every vertex and by n! if n identical vertices are present. The latter n!-factor comes from the expansion
of the exponential in the path integral. In the present 2-point graph, one arrives at 4.3/4! = 1/2.
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When computing the first order corrections to the 4-point function, we easily see that
connected and disconnected graphs appear in the result of

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 =
1

i4Z[J ]

δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣∣
J=0

(2.36)

=
x1 x2

x3 x4
+ +

++ 6 permutations of

x1 x3

x2 x4

x1 x4

x2 x3

x3 x4

x1 x2 x2

x1 x4

x3

+O(λ2) ,

i.e. the generating functional Z[J ] generates both types of graphs. In contrast, the Zc[J ] :=
−i lnZ[J ] generates only connected graphs and is hence called the generating functional of
the connected graphs. For example, observe that

1

i

δ2Zc[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

= (−i)2

(
1

Z[J ]

δ2Z[J ]

δJ(x1)δJ(x2)
− 1

Z2[J ]

δZ[J ]

δJ(x1)

δZ[J ]

δJ(x2)

) ∣∣∣∣∣
J=0

= 〈0|Tφ(x1)φ(x2)|0〉 − 〈0|φ(x1)|0〉〈0|φ(x2)|0〉
= 〈0|Tφ(x1)φ(x2)|0〉c . (2.37)

In the present case, however, 〈0|φ(x1)|0〉 = 0. But for e.g. the 4-point functions there is a
difference, and one can convince oneself that

1

i4
δ4Zc[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣∣
J=0

= 〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉c =
x2

x1 x4

x3

(2.38)

Exercise 5 Explicitly compute the 4-point function up to order λ and show that Zc generates
only connected graphs while Z generates both connected and disconnected ones!

At order λ2 one discovers, that the connected diagrams generated by Zc still contain two
types of diagrams: the one particle reducible ones, which can be reduced to two connected
diagrams by cutting an internal line, and the more fundamental one particle irreducible
(1PI) graphs.

2.5. Effective action

Let us define the “classical field” φc(x) as2

φc(x) = 〈0|φ(x)|0〉J =
1

iZ[J ]

δZ[J ]

δJ(x)
=
δZc[J ]

δJ(x)
. (2.39)

2Note, that φc(x) is indeed a functional of the source J and in the present case of φ4 theory vanishes for
J = 0 — in general it becomes a constant.
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The name “classical” is motivated by the following observation: Assuming that the measure
of the path integral does not change under a redefinition of the field variable, we have

δZ[J ] = N
∫
Dφ i

∫
d4xδφ(x)

δS[φ, J ]

δφ(x)
eiS[φ,J ] = 0 , (2.40)

since Z is independent of φ, and it follows that the Euler-Lagrange equations hold as an
expectation value equation (Ehrenfest’s theorem):

〈0|δS[φ, J ]

δφ(x)
|0〉J = 0 . (2.41)

Considering the generic form − δS[φ,J ]
δφ(x) = F (φ(x))− J(x) we find

−N
∫
DφδS[φ, J ]

δφ(x)
eiS[φ,J ] = 0 , or[

F

(
−i

δ

δJ(x)

)
− J(x)

]
Z[J ] = 0 , or

F

(
δZc[J ]

δJ(x)
− i

δ

δJ(x)

)
− J(x) = 0 . (2.42)

Restoring ~ (which have set to 1) in this equation and using Eqn. (2.39), we get

F

(
φc(x)− i~

δ

δJ(x)

)
− J(x) = 0 , (2.43)

which in the classical limit ~ → 0 reduces to the form of the classical Euler-Lagrange
equations.

The relation (2.39) indicates that the variables J(x) and φc(x) are in some sense con-
jugate variables. This motivates the definition of a new functional through the Legendre
transformation

Γ[φc] := Zc[J ]−
∫
d4xJ(x)φc(x) . (2.44)

Clearly, δΓ[φc]
δφc(x) = −J(x) which reminds us of δS[φ]

δφ(x) = −J(x), and therefore Γ[φc] is known as
the “effective action functional”. Note that∫

d4z
δ2Zc[J ]

δJ(y)δJ(z)

δ2Γ[φc]

δφc(z)δφc(x)
= −δ(x− y) , (2.45)

which follows from δ
δJ(y)

δΓ[φc]
δφc(x) = −δ(x − y) using the chain rule and the definition of φc.

Introducing the abbreviations

Γ(n) :=
δnΓ[φc]

δφc(x1) · · · δφc(xn)
, Z(n)

c :=
δnZc[J ]

δJ(x1) · · · δJ(xn)
, (2.46)

one can show that Γ(n)
∣∣
φc

, i.e. Γ(n) evaluated at φc[J = 0], which for φ4-theory is 0, is the

1PI n-point vertex function. Hence, Γ[φc] is also known as the 1PI generating functional.
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For example, since Z
(2)
c

∣∣
J=0

= −G(2), Eqn. (2.45) tells us that Γ(2)
∣∣
φc

is the inverse of the
full propagator at every order of perturbation theory. Hence

Γ(2)
∣∣
φc

= Γ
(2)
0 − Σ ,

G(2) =
1

G−1
F − Σ

= GF +GFΣGF +GFΣGFΣGF + . . . , (2.47)

using Eqn. (2.45) in a short-hand notation in the second step. Furthermore, it follows from
varying Eqn. (2.45) with respect to J(ω) that∫
d4z

δ3Zc[J ]

δJ(ω)δJ(y)δJ(z)

δ2Γ[φc]

δφc(z)δφc(x)
= −

∫
d4zd4σ

δ2Zc[J ]

δJ(y)δJ(z)

δ3Γ[φc]

δφc(z)δφc(x)δφc(σ)

δ2Zc[J ]

δJ(σ)δJ(ω)
(2.48)

and hence using (2.45) once more one finds

δ3Zc[J ]

δJ(ω)δJ(y)δJ(z)
=

∫
d4x′d4y′d4z′

δ2Zc[J ]

δJ(x)δJ(x′)

δ2Zc[J ]

δJ(y)δJ(y′)

δ2Zc[J ]

δJ(z)δJ(z′)

δ3Γ[φc]

δφc(x′)δφc(y′)δφc(z′)
,

(2.49)

or in short hand notation

Z(3)
c = Z(2)

c Z(2)
c Z(2)

c Γ(3) . (2.50)

=

Similar relations can be derived for the 4 or n-point Green functions by varying Eqn. (2.45),
i.e. for the former one has in graphical notation:

= + + . . .

2.6. S matrix

Let us define an incoming free field φin(x) := lim
x0→−∞

assuming an adiabatic vanishing of the

source j at x0 → ±∞. Similarly, an outgoing free field is then φout(x) := lim
x0→+∞

. The idea

is, that a free incoming field propagates in time, a source is adiabatically switched on, the
field interacts, and the source is adiabatically turned off leaving a once more free outgoing
field. This construction, of course takes place in a given Hilbert space, and one may try to
find the unitary operator S which connects the in- and out-fields (and states):

φout(x) = S−1φinS , |out〉 = S−1|in〉 . (2.51)
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In general, one is of course interested in the situation where an initial configuration of
particles α ends up as a final configuration β after a scattering process. The scattering
amplitude for this is denoted

Sαβ = out〈β |α〉in = in〈β|S|α〉in , (2.52)

and its square measures the probability for the process in question. If for example |α〉in
consists of two scalar particles with momenta p1 and p2, then |α〉in = a†in(p1)a†in(p2)|0〉 where
a† are creation operators. Obviously, invariance of the vacuum demands that S00 = 1.

In Eqn. (1.19) we have already given a general solution to the classical e.o.m. for a scalar
field. Using the expressions for advanced and retarded Green functions of (1.21) we may
write

φ(x) = φin(x) +

∫
d4xGret(x, x

′)j(x′) = φout(x) +

∫
d4xGadv(x, x′)j(x′) , (2.53)

and consider the weak asymptotic condition lim
t→±∞

〈a|φ(x)|b〉 = 〈a|φout
in

(x)|b〉. (Note, that we

are considering quantized fields φ in this section.)
Now, the inhomogeneity j above is due to the interaction part, i.e. should be replaced by

j(x′)→ ∂Lint

∂φ(x′)
= Kx′φ(x′) , (2.54)

where the last step follows from the e.o.m and K = (�+m2) is the Klein-Gordon operator.
Next, we define the functional

I[J ] = Tei
∫
d4xJ(x)φ(x) , (2.55)

whose vacuum expectation value is the generating functional Z[J ], i.e. 〈0|I[J ]|0〉 = Z[J ]. It
then follows from (2.53), (2.51) and S−1 = S† that

φoutI − Iφin = i

∫
d4x

(
Gret(x, x

′)−Gadv(x, x′)
)
Kx′

δI[J ]

δJ(x′)
, and

[φin(x), SI[J ]] = i

∫
d4x

(
Gret(x, x

′)−Gadv(x, x′)
)
Kx′

δSI[J ]

δJ(x′)
. (2.56)

Now one can show that upon promoting φ± in Eqn. (1.22) to creation/annihilation oper-
ators, that the expression Gadv − Gret coincides with the commutator of free scalar fields
[φin(x), φin(x′)]. Employing furthermore the Baker-Campbell-Hausdorff formula in the form[
A, eB

]
= [A,B] eB for the case where [A,B] is a c-number, the solution

SI[J ] = exp

(∫
d4xφin(x)K

δ

δJ(x)

)
F [J ] ,

where F [J ] is some functional of J , suggests itself. Taking the vacuum expectation value
thereof and considering 〈0|S = 〈0| in the absence of external fields, we find (for normal
ordered SI):

〈0|SI[J ]|0〉 = F [J ] , and 〈0|SI[J ]|0〉 = 〈0|I[J ]|0〉 = Z[J ] . (2.57)
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Hence, we arrive at the so-called reduction formula

S = : exp

(∫
d4xφin(x)Kx

δ

δJ(x)

)
: Z[J ]

∣∣∣∣
J=0

, (2.58)

where “:” denotes normal ordering. The above formula means, that for a given Feynman
graph, one has to amputate all external legs and replace them by the incoming free field wave
functions φin. (The operator K converts external propagators into δ-functions.) Hence, the
n-particle S-matrix element is

Sn(x1, . . . , xn) =
∏
i

φ(xi)KxiG(x1, . . . , xn) , (2.59)

where G(x1, . . . , xn) denotes the n-particle Green function.

2.7. Euclidean path integrals

By analytic continuation of all integrals to imaginary time in the complex t-plane, i.e.
t → t′ := −iτ where τ ∈ R, one arrives at Euclidean path integrals. This “Wick-rotation”
can be useful to simplify certain computations, taking into account the famous Oster-
walder–Schrader theorem which basically states that if a quantum field theory exists in
Euclidean space, it also exists in the Wick-rotated Minkowski space-time. Of course, one
must take care not to cross any poles when doing a Wick-rotation. For example, consider

ℜ(k0)

ℑ(k0)

Figure 2.1.: Wick-rotation

the following propagator (of the harmonic oscillator):

GF (k) = lim
ε→0+

1√
2π

1

k + ω − iε

1

k − ω + iε
, (2.60)

which has poles at k = −ω+iε and k = ω− iε. Hence, for the analytic continuation from <k0

to =k0 one must rotate anticlockwise, i.e. k0 → k′0 = iκ, as indicated in Figure 2.1. Since
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we can represent k0 → i∂∂t , it follows that in the complex t-plane the consistent rotation will
be t→ t′ = −iτ as stated above.

Euclidean path integrals can in fact be interpreted in a statistical context. Let us make
this clearer by reviewing some facts of statistical ensembles: For a given ensemble (e.g. a
system of harmonic oscillators), the value of any observable quantity averaged over the entire
ensemble will take the form

〈A〉 =
∑
n

pn〈n|A|n〉 =
∑
n

pnAn , (2.61)

where pn is the probability of finding a system in the ensemble to be in an energy eigenstate
|n〉. In fact, there are two kinds of averaging involved here: the average in a quantum state
(the expectation value) and the averaging with respect to the probability distribution of
systems in the ensemble. As pn is a probability, it has to satisfy the conditions

0 ≤ pn ≤ 1 ,
∑
n

pn = 1 . (2.62)

If we consider a thermodynamic ensemble interacting with a large heat bath, and assume we
have waited long enough to achieve thermal equilibrium, then the probability distribution
is given by the Maxwell-Boltzmann distribution

pn =
1

Z
e−βEn , β :=

1

kBT
, (2.63)

where En is the energy of the nth quantum state, kB is Boltzmann’s constant, and T
the temperature of the system. Using the conditions for pn, one easily determines the
normalization Z:

Z(β) =
∑
n

e−βEn =
∑
n

〈n|e−βH |n〉 = Tre−βH . (2.64)

In fact, Z(β) is known as the partition function of the system and plays the most fundamental
role in deriving the thermodynamic properties of the system.

For such a thermodynamical ensemble, the thermodynamic average according to (2.61) is
given by

〈A〉β =
1

Z(β)

∑
n

〈n|e−βHA|n〉 =
Tr
(
e−βHA

)
Tre−βH

. (2.65)

In particular, the average energy computes to

〈H〉β = U = − 1

Z(β)

∂Z(β)

∂β
= −∂ lnZ(β)

∂β
, (2.66)

and entropy is given by

〈ln p〉β = S = −
∑
n

pn ln pn =
∑
n

pn (βEn + lnZ(β)) = βU + lnZ(β)

= −β2 ∂

∂β

(
1

β
lnZ(β)

)
. (2.67)
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The free energy can hence be written as

F (β) = U − kBTS

= − 1

β
lnZ(β) , (2.68)

and hence the partition function takes a particularly simple form when expressed in terms
of free energy:

Z(β) = e−βF (β) . (2.69)

To sum up, a thermodynamical statistical ensemble can be described by a Euclidean path
integral where the Euclidean time interval plays the role of temperature and the partition
function is identified with the transition amplitude. In general, one uses Euclidean path
integrals to study phase transitions of quantum systems — an example from high energy
physics would be a quark-gluon plasma.

2.8. Path integrals for gauge theories

Our starting point is the generating functional

Z[Jµ] = eiZc[Jµ] = N
∫
DAµeiSJ [Aµ] , (2.70)

where

SJ [Aµ] =

∫
d4x

(
−1

4
FµνF

µν + jµA
µ

)
=

1

2

∫
d4x

∫
d4x′Aµ(x)Oµν(x− x′)Aν(x′) +

∫
d4xJµ(x)Aµ(x) ,

Oµν(x− x′) = (�ηµν − ∂µ∂ν) δ4(x− x′) , (2.71)

neglecting surface terms. The path integral over the gauge fields Aµ would lead to detO.
Unfortunately, this integral does not exist since O is a projection operator (cf. Section 1.2.2).
In fact, the source of this difficulty is the invariance of the above action under a gauge
transformation

Aµ → A(α)
µ = UAµU

−1 + iU−1(∂µU) ,

U(α) = e−iα(x) . (2.72)

All A
(α)
µ that can be obtained from a certain Aµ by making a gauge transformation with

arbitrary α(x) are said to lie on an “orbit” in group space (in this case the Abelian U(1)
group). Since the action is invariant on such orbits, the generating functional Z[Jµ] is
proportional to the “volume” of the orbits denoted by

∫ ∏
x
dα(x) (resp. the group invariant

Haar measure
∏
x
dU(x) in the non-Abelian case). This infinite factor needs to be extracted

before doing any calculations, and this is best done by the method of Faddeev and Popov:
The idea is to “fix” the gauge freedom and to integrate over each orbit only once, i.e. one
chooses a hypersurface defined by a “gauge condition” F (Aµ) = 0, which intersects each
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gauge orbit only once. Even if Aµ does not satisfy this condition, one can find a gauge

transformed A
(α)
µ which does, i.e. F (A

(α)
µ ) = 0 then has a unique solution3 for α(x).

Now the trick due to Faddeev and Popov to extract out the infinite gauge volume factor
relies on the insertion of

∆FP [Aµ]

∫ ∏
x

dα(x)δ
(
F (A(α)

µ )
)

= 1 , (2.73)

into the path integral. Note that ∆FP [Aµ] is a gauge invariant quantity because its inverse
is. (The measure in the group space is invariant under a gauge transformation.) We make an

inverse gauge transformation Aµ → A
(−α)
µ , absorb the gauge volume into the normalization

N and arrive at

Z[Jµ] = N
∫
DAµ∆FP [Aµ]δ (F (Aµ)) eiSJ [Aµ] . (2.74)

In order to determine ∆FP [Aµ], notice first that

∆−1
FP [Aµ] =

∫ ∏
x

dα(x)δ
(
F (A(α)

µ )
)

=

∫ ∏
x

dFδ
(
F (A(α)

µ )
)(

det
δα

δF

)
= det

(
δα

δF

) ∣∣∣∣
F (A

(α)
µ )=0

. (2.75)

Thus, we find the Faddeev-Popov determinant

∆FP [Aµ] = det

(
δF (A

(α)
µ )

δα

)∣∣∣∣
α(x)=0

, (2.76)

which can be thought of as the Jacobian that goes with a particular gauge choice.
In a further step, we generalize the above to F (Aµ(x)) = f(x), where f(x) is independent

of Aµ. Since physical quantities are independent of f , we may multiply the generating
functional by a weight factor and integrate over all f(x) to arrive at

Z[Jµ] = N
∫
DAµDf∆FP [Aµ]δ (F (Aµ)− f(x)) eiSJ [Aµ]e

− i
2ξ

∫
d4x(f(x))2

= N
∫
DAµ∆FP [Aµ]e

iSJ [Aµ]− i
2ξ

∫
d4x(F (Aµ(x)))2

, (2.77)

where ξ is known as the gauge fixing parameter. In fact, this new term in the action can
equivalently be seen as the result of integrating out a new multiplier field b. Namely, observe
that

N
∫
Db ei

∫
d4x(F (Aµ)b+ ξ

2
b2) = N ′e−

i
2ξ

∫
d4x(F (Aµ))2

. (2.78)

Finally, we can also write the Faddeev-Popov determinant in a path integral form by intro-
ducing unphysical “ghost” fields c and c̄:

∆FP [Aµ] =

∫
Dc̄Dce

−i
∫
d4x

∫
d4x′c̄(x)

(
δF (A

(α)
µ (x))

δα(x′)

)
α=0

c(x′)

. (2.79)

3One should mention at this point, that such a hypersurface cannot be found in the non-Abelian case in
the sense that any hypersurface will intersect gauge orbits more than once. This is commonly referred to
as the Gribov ambiguity.
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Thus the complete action (without sources) for this choice of gauge condition reads

S[Aµ, b, c̄, c] =

∫
d4x

(
−1

4
FµνF

µν + (∂µA
µ)b+

ξ

2
b2 + ∂µc̄(x)∂µc(x)

)
, (2.80)

dropping surface terms once more. In the present model, the ghosts do not interact with
the gauge fields and can hence be neglected in explicit loop computations, however, in non-
Abelian gauge theories this is no longer true.

Exercise 6 Show that the gauge field propagator in momentum space derived from the action
(2.80) is given by

Gµν(p) =
−i

p2

(
ηµν − (1− ξ)pµpν

p2

)
. (2.81)

Why is it impossible for the auxiliary field b to appear in Feynman graphs?

BRST invariance.
Since we have actually “merely” inserted a factor of unity, Eqn. (2.73), into the path

integral, the physical content of the theory has not changed. On the other hand, the action
Eqn. (2.80) no longer exhibits the gauge symmetry due to the gauge fixing terms. However,
this action exhibits a new global nilpotent fermionic symmetry, which in some sense “re-
members” the gauge symmetry of the original theory. It is called the BRST symmetry4, and
in our case the according symmetry transformations which leave the action above invariant
are given by

sAµ = ∂µc , sc = 0 ,

sc̄ = b , sb = 0 ,

s2 = 0 . (2.82)

If one repeats the same Faddeev-Popov procedure for non-Abelian SU(N) gauge fields
where

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] = F aµνT
a ,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

Sinv =

∫
d4x
−1

2
TrFµνF

µν =

∫
d4x
−1

4
F aµνF

a,µν , (2.83)

fabc are the antisymmetric structure constants, and T a are the generators of the SU(N)
group, one arrives at

S(Aµ, b, c̄, c) =

∫
d4x

(
−1

4
F aµνF

a,µν + (∂µAaµ)ba +
ξ

2
(ba)2 + ∂µc̄a(Dµc)

a

)
,

Dab
µ = δab∂µ + gfabcAcµ . (2.84)

4This symmetry was discovered in 1975 by C. Becchi, A. Rouet and R. Stora, and independently by I. V.
Tyutin in the same year.
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This action is invariant under the BRST transformations

sAaµ = (Dµc)
a , sca = −g

2
fabccbcc ,

sc̄a = ba , sba = 0 ,

s2 = 0 . (2.85)

Note, that as before the BRST transformation of the gauge field has the same form as
the according infinitesimal gauge transformation, but with the ghost c(x) replaced by some
(bosonic) function αa(x), i.e.

Aµ(x)→ U−1(x)Aµ(x)U(x) +
i

g
U−1(x)∂µU(x) ≈ Aµ(x) +Dµα(x) ,

U(x) = e−igαa(x)Ta . (2.86)

Furthermore, in the non-Abelian case the field tensor transforms covariantly under an in-
finitesimal gauge transformation, i.e. as

Fµν → U−1FµνU ≈ Fµν − ig [Fµν , α(x)] , (2.87)

(in contrast to the Abelian case where it is invariant). However, the trace of two field
tensors TrFµνF

µν (and hence the invariant part of the action) is gauge invariant due to
cyclic invariance of the trace.

As a final comment to this section, we mention that the physical space of the gauge theory
can be identified as satisfying

QBRST|phys〉 = 0 , (2.88)

where QBRST is the charge constructed from the Noether current of the BRST symmetry.
Additionally, physical states are free of ghosts, as should already be clear by how the ghosts
were introduced into the theory. Since Q2

BRST = 0, our Hilbert space actually decomposes
into three subspaces: one where QBRST|ψ〉 6= 0, one where states may be written as |ψ〉 =
QBRST|ψ′〉 and hence are annihilated by QBRST, and the physical one above but where states
cannot be written as in the second subspace. Furthermore, the S-matrix of the physical
subspace must be unitary so as not to mix physical and unphysical asymptotic states. This
is of course the case, as can be shown.

In the Abelian case, condition (2.88) implies the Gupta-Bleuler condition ∂µAµ|phys〉 = 0
for the gauge fixing we considered above. One may also verify through explicit computation
that ∂Z[J ]

∂ξ = 0 using Eqn. (2.88) and the fact that the vacuum belongs to the physical Hilbert
space.

Ward identities.
BRST invariance of the theory leads to various relations between Feynman graphs (and

hence scattering amplitudes) called Ward identities. These play an important role when
it comes to proving renormalizability, and additionally provide various consistency checks
when doing explicit computations.

In the derivation above, we have introduced several new fields into the gauge theory for
which we need to introduce sources as well. we consider the non-Abelian case (of which the
Abelian theory is a simpler special case), and write

SJ [A, b, c̄, c] = S[A, b, c̄, c] +

∫
d4x

(
ja,µAaµ + jaba + η̄aca − c̄aηa

)
. (2.89)
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A BRST transformation of this action inside the path integral leads to

sSJ [A, b, c̄, c] =

∫
d4x

(
ja,µ(Dµc)

a +
g

2
fabcη̄acbcc − baηa

)
,

sZ[J ] = 0 = N
∫
DADbDc̄Dc i (sSJ [A, b, c̄, c]) eiSJ [A,b,c̄,c]

=

∫
d4x

(
ja,µ〈(Dµc)

a〉+ η̄a〈g
2
fabccbcc〉 − ηa〈ba〉

)
. (2.90)

If we introduce two further external sources for the non-linear BRST transformations

Sext =

∫
d4x

(
Ka,µ(Dµc)

a −Ka g

2
fabccbcc

)
,

SJ,K [A, b, c̄, c] := SJ [A, b, c̄, c] + Sext , (2.91)

we can rewrite (2.90) as∫
d4x

(
ja,µ(x)

δZc[J,K]

δKa,µ(x)
− η̄a(x)

δZc[J,K]

δKa(x)
− ηa(x)

δZc[J,K]

δja(x)

)
= 0 . (2.92)

From this “master equation” one can derive all identities relating the connected Green
functions of the theory. A Legendre transformation allows to rewrite the master equation
in terms of the effective action, i.e. with

Γ[A, b, c̄, c,K] = Zc[J,K]−
∫
d4x

(
ja,µAaµ + jaba + η̄aca − c̄aηa

)
, (2.93)

(where we dropped the subscripts c of the classical fields — cf. Section 2.5) it follows that

−
∫
d4x

(
δΓ

δAaµ(x)

δΓ

δKa,µ(x)
+

δΓ

δca(x)

δΓ

δKa(x)
+

δΓ

δc̄a(x)
ba
)

= 0 . (2.94)

In this form, the master equation is commonly referred to as the Slavnov-Taylor identity, and
it allows to derive all relation between the 1PI vertices resulting from BRST invariance of
the theory. Note, that at tree level (i.e. in the classical approximation) where Γ[φc] = S[φ],
the Slavnov-Taylor identity is just another way of writing sS[φ] = 0.
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3. Renormalization

3.1. Regularization and power counting

In general, perturbative computations in quantum field theories involve distributions multi-
plied with one another. These expressions are mathematically ill-defined and hence usually
lead to divergences. In order to handle such expressions, the common strategy is to regu-
larize the expressions in order to be able to split off the divergent parts which then may be
absorbed by redefinition of the parameters of the Lagrangian. The latter process is referred
to as renormalization.

Let us illustrate this procedure by considering a scalar quantum field theory, namely φ4

theory: From Eqn. (1.20) we see that the propagator diverges for x = x′, i.e.

G(0) = −
∫

d4p

(2π)4

1

p2 −m2
. (3.1)

Since there are four powers of p in the numerator and two in the denominator, this integral is
expected to diverge quadratically at large p (hence the term “ultraviolet/UV divergence”).
Similarly, the square of a propagator is a divergent quantity as well:

[G(x− x′)]2 =

∫
d4p

(2π)4
eip(x−x′)

∫
d4k

(2π)4

1

(k2 −m2) ((p− k)2 −m2)
, (3.2)

which diverges logarithmically for large k.

Power counting.
The superficial degree of divergence of an arbitrary Feynman graph can be inferred by

considering the properties of the Feynman rules for propagators and vertices of the model
in question. For φ4 theory, for example, one has one propagator behaving like 1/k2 for large
momenta, hence reducing the degree of divergence by 2. Furthermore, every 4-dimensional
loop integral raises the degree of divergence by 4. Hence,

d(γ) = 4L− 2I , (3.3)

where L denotes the number of loops and I denotes the number of internal lines (i.e. prop-
agators). Since there are I internal momenta as well as momentum conservation at each
vertex and finally also overall momentum conservation, the number of independent momenta,
which is L, is given by the relation

L = I − (V − 1) , (3.4)

where V denotes the number of vertices in the graph. Finally, one needs relations between
the number of vertices and the number of legs. External legs denoted by E count once,
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whereas internal legs I count twice as they are always connected to two vertices (or two legs
at one vertex). Thus, one finds the following relation:

4V = E + 2I . (3.5)

Putting all pieces together, we hence find

d(γ) = 4 + 2I − 4V

= 4− E . (3.6)

Notice, that the simultaneous elimination of I and V was only possible in 4-dimensional
space-time. Furthermore, the mass dimension of the scalar field φ is 1, as can be seen from
the action Eqn. (2.24). In general, the field dimension will be related to the numerical
prefactor of E in the according power counting formula.

Exercise 7 Check this claim by deriving the according power counting for QED!

The power counting formula for scalar φ4 theory Eqn. (3.6) tells us, that any correction to
the two-point function can at most diverge quadratically (E = 2 → d(γ) = 2), and any cor-
rection to the four point function can at most diverge logarithmically (E = 4 → d(γ) = 0)
independent of the number of loops. The fact that only a finite number of n-point functions
(namely two) exhibit divergences is an important requirement for renormalizability of the
model, since we only have a limited number of parameters we may redefine to absorb these
divergences. In order to do so, non-existent divergent integrals must first be regularized.

Various regularizations schemes are known, and we start by reviewing Pauli-Villars reg-
ularization applied to the example above and then compare to dimensional regularization.
Both schemes preserve translation and rotation invariance of the theory.

Pauli-Villars regularization.
This regularization scheme was introduced by in 1949 by W. Pauli and F. Villars and is

based on substituting the Feynman propagator GF (x− x′,m) by an expression of the form

Greg
F (x− x′) =

n∑
i=0

ciGF (x− x′,Mi) ,

c0 = 1 , M0 = m, (3.7)

supplemented by the conditions ∑
i

ci = 0 , (3.8a)∑
i

ciM
2
i = 0 . (3.8b)

The first condition (3.8a) cancels the strongest singularities of any Feynman graph, and
the second one (3.8b) then cancels remaining singularities. This means, that if a given
theory is only logarithmically divergent, condition (3.8a) suffices, and only one auxiliary
mass M1 = M with c1 = −1 is necessary.
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Let us illustrate how the first condition removes the quadratic singularity in G(0) of φ4

theory:

Greg
F (x− x′) = −

∫
d4p

(2π)4
eip(x−x′)

(
1

p2 −m2
− 1

p2 −M2

)
= −

∫
d4p

(2π)4
eip(x−x′) M2 +m2

(p2 −m2)(p2 −M2)
, (3.9)

which for x = x′ is only logarithmically singular instead of quadratically. Obviously, all
divergences are recovered in the limits Mi →∞, i > 0.

Let us compute an exemplary graph in φ4 theory:
All in all, Pauli-Villars regularization works fine in scalar field theories and also in QED,

but it breaks gauge invariance when considering non-Abelian gauge theories such as QCD.
Therefore, dimensional regularization is usually the best choice in those models, as it always
preserves gauge invariance. We shall review its properties in the following.

Dimensional regularization.
This regularization scheme was introduced in 1971 by G. ’t Hooft and M. J. G. Veltman

and is based on the observation that divergent Feynman integrals would become convergent
when computed in a smaller space dimension. Therefore, computations are done in arbitrary
d-dimensional space and the result of the integration can then be analytically continued
to real or even complex values of d. The original ultraviolet divergences then manifest
themselves as poles at d = 4, typically in the form of Gamma functions.

We illustrate this procedure by repeating our previous example in this scheme: Since
we are now considering 4 − ε dimensional space-time, the canonical dimension of the cou-
pling λ would change as well, unless we introduce a new parameter λ → µελ. Hence,
using Eqn. (A.53a) in Appendix A.3, the one-loop correction to the two-point function in
momentum space is given by

1

2
µελ

∫
d4−εp

(2π)4−ε
1

p2 −m2
= − iλm2

32π2

(
4πµ2

−m2

)ε/2
Γ (−1 + ε/2)

≈ iλm2

16π2ε
+ finite. (3.10)

Observe, that the above integral becomes zero in the limit m→ 0. This is a typical feature
of dimensional regularization.

3.2. Renormalization and renormalization group

Mass renormalization.
The result we have just obtained in (3.10), is essentially what we denoted earlier as −iΣ

— seeEqn. (2.47). Defining the “physical” (or renormalized) mass mphys by the pole of the
complete propagator

G(2)(k) =
i

k2 −m2
phys

, (3.11)
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gives on comparison

m2
phys = m2 + Σ = m2

(
1− λ

16π2ε

)
, (3.12)

which to order λ is equivalent to

m2 = m2
phys

(
1 +

λ

16π2ε

)
, (3.13)

where the renormalized mass is given by m2
phys = −Γ(2)(0) and is taken to be finite (i.e. the

bare mass m2 is infinite and compensates the 1-loop correction).
An alternative point of view which is quite common is to consider counter terms in the

Lagrangian and treat those as an interaction giving rise to additional Feynman rules. In the
present case such a counter term would read δL1 = −1

2δm
2φ2 and its effect is that we now

have Γ(2)(k) = k2 − m2 since the divergence is cancelled by the additional “interaction”.
Hence, in this picture m2 is a finite quantity (in contrast to before). The introduction of
this counter term is equivalent to multiplying m by a renormalization factor Zm.

The coupling λ is renormalized in a similar way by computing the 1-loop correction to
the four point function, i.e. λren. = Γ(4)(0).

Exercise 8 Compute the 1-loop correction to the four-point Green function, showing that
in dimensional regularisation it results to

Γ(4)(pi) = −iλµε
(

1− 3λ

16π2ε

)
+ finite. (3.14)

Renormalization of the wave function φ is not necessary at 1-loop level in this model, but
it appears at two-loop level. We call the according renormalization factors Zλ and Zφ.

Renormalization group.
We have the following relation between the n-particle vertex function and its renormalized

counter part:

Γ(n)(pi,m, λ) = Z
−n/2
φ (λµε)Γ(n)

r (pi,mr, λr, µ) . (3.15)

It the follows that

µ
∂

∂µ
Γ(n) = 0 , (3.16)

and hence (
−nµ ∂

∂µ
ln
√
Zφ + µ

∂

∂µ
+ µ

∂λr
∂µ

∂

∂λr
+ µ

∂mr

∂µ

∂

∂mr

)
Γ(n)
r = 0 . (3.17)

Defining the quantities

γ(λr) = µ
∂

∂µ
ln
√
Zφ , mγm(λr) = µ

∂mr

∂µ
,

β(λr) = µ
∂λr
∂µ

, (3.18)
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we may write this equation as(
µ
∂

∂µ
+ β(λr)

∂

∂λr
− nγ(λr) +mγm(λr)

∂

∂mr

)
Γ(n)
r = 0 . (3.19)

It is called the renormalization group equation and expresses the invariance of the renor-
malized Γ(n) under a change of regularization parameter µ.

Let us now derive a similar equation expressing the invariance of Γ(n) under a change of
scale, i.e. p→ tp, m→ tm, µ→ tµ. Since Γ(n) has mass dimension D = 4− n+ ε

(
n
2 − 1

)
,

Γ(n)(tp, λ,m, µ) = tDΓ(n)(p, λ,m/t, µ/t) ,(
t
∂

∂t
+m

∂

∂m
+ µ

∂

∂µ
−D

)
Γ(n) = 0 , (3.20)

and using (3.19),(
−t∂
∂t

+ β
∂

∂λ
− nγ(λ) +m (γm(λ)− 1)

∂

∂m
+D

)
Γ(n)(tp, λ,m, µ) = 0 , (3.21)

where we have omitted the subscripts r. This equation tells us that a change in t may be
compensated by a change in m and λ. Hence, we expect the form

Γ(n)(tp, λ,m, µ) = f(t)Γ(n)(p, λ(t),m(t), µ) (3.22)

and differentiating this with respect to t reveals that t∂λ(t)
∂t = β(λ). Therefore, λ(t) is called a

running coupling constant. The zeros of the β-function are called fixed points and depending
on the quantum theory several of these may be present.

Exercise 9 Compute the 1-loop β-function for φ4 theory and show that it results to

β(λ) = lim
ε→0

µ
∂λ

∂µ
=

3λ2

16π2
> 0 . (3.23)

33



A. Supplemental Material

A.1. Dirac formalism

In this section, we will give a short introduction to the quantization-formalism introduced
in 1964 by P.A.M. Dirac which enables to handle constrained Hamiltonian systems. To this
end we will mainly follow reference [6].

A.1.1. Hamilton systems with constraints

We start with an action for classical mechanics:

S =

∫
L(qn, q̇n)dt , (A.1)

where L is the Lagrangian and the q̇n denote the time-derivatives of the generalized coordi-
nates qn. Variation of this action leads to the Euler-Lagrange equations

d

dt

(
∂L

∂q̇n

)
=

∂L

∂qn
, (A.2)

and using the chain rule for the left hand side of this equation leads to

q̈n′

(
∂2L

∂q̇n′∂q̇n

)
=

∂L

∂qn
− q̇n′

∂2L

∂qn′∂q̇n
. (A.3)

q̈n′ can only be determined from this equation if the determinant

det

(
∂2L

∂q̇n′∂q̇n

)
6= 0 , (A.4)

is unequal zero. In this case, a Legendre transformation leads to the so-called Hamiltonian

H(qn, pn) ≡ pnq̇n(qn, pn)− L(qn, q̇n(qn, pn)), (A.5)

where the conjugate momenta pn are defined as

pn ≡
∂L

∂q̇n
. (A.6)

If the pn do not depend on the q̇n, which is exactly the case when the determinant (A.4)
vanishes1, one gets certain relations

φm(q, p) = 0, (A.7)

1With (A.6) one has ∂2L
∂q̇n′∂q̇n

= ∂pn
∂q̇n′

.
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out of (A.6), so-called primary constraints. But even if the transformation is singular, one
can easily show that H depends only on qn and pn: Variation of the right hand side of (A.5)
yields

δH = pnδq̇n + q̇nδpn −
∂L

∂qn
δqn −

∂L

∂q̇n
δq̇n = q̇nδpn −

∂L

∂qn
δqn, (A.8)

where the definition (A.6) was used. Hence, from (A.5) follows(
q̇n −

∂H

∂pn

)
δpn −

(
∂L

∂qn
+
∂H

∂qn

)
δqn = 0. (A.9)

Note that the variations δpn and δqn are not independent from each other because of the
constraints. Since every function G on the phase space, which vanishes on the subspace
φm = 0, can be written as a linear combination of the constraints (G = gmφm), one concludes
that (A.9) must have the form

um
∂φm
∂pm′

δpm′ + um
∂φm
∂qm′

δqm′ = 0. (A.10)

(A proof can be found in e.g. reference [6].) Comparing coefficients finally leads to the
generalized Hamiltonian equations of motion

q̇n =
∂H

∂pn
+ um

∂φm
∂pn

, (A.11a)

ṗn = −∂H
∂qn
− um

∂φm
∂qn

, (A.11b)

where the equations (A.2) and (A.6) were used for the left hand side of (A.11b).
We will now need the definition of the Poisson bracket

{f, g}PB =
∂f

∂qn

∂g

∂pn
− ∂f

∂pn

∂g

∂qn
, (A.12)

which is antisymmetric and fulfills the Jacobi identity. Let g be an arbitrary function of qn
and pn. Its time derivative is then given by

ġ =
∂g

∂qn
q̇n +

∂g

∂pn
ṗn . (A.13)

Using the Hamiltonian equations of motion (A.11) and the definition of the Poisson bracket
(A.12) one obtains

ġ = {g,H}PB + um{g, φm}PB . (A.14)

Following the notation of Dirac we write this expression as a “weak” relation:

ġ ≈ {g,HT }PB, (A.15)

where HT denotes the “total” Hamiltonian, HT ≡ H +umφm. The “≈” means that one has
to evaluate all Poisson brackets before setting the constraints to zero (φm ≈ 0).
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Since the constraints φm are functions of qn and pn as well, they must of course fulfill the
same equation of motion (A.14) as the functions g. Hence, consistency demands:

0 ≈ φ̇m ≈ {φm, H}PB + um′{φm, φm′}PB . (A.16)

This equation can be used to determine the um unless the second Poisson bracket vanishes
({φm, φm′}PB=0). In that case one gets further constraints, so-called secondary constraints:

χ(q, p) ≈ 0 . (A.17)

Of course the secondary constraints have to fulfill the equation of motion (A.14), too. This
may lead to further secondary constraints and so on.

Once all secondary constraints have been found, one can start to classify them. According
to Dirac there are two “classes” of constraints: first class and second class (not to be confused
with primary and secondary). A phase space function (or constraint) is called first class
when its Poisson brackets with all other constraints is (weakly) zero. If at least one of these
Poisson brackets is unequal zero, one speaks of a second class function/constraint.

Let us go back to equation (A.16): As long as the second Poisson bracket does not vanish,
one gets solutions for um:

um = Um(p, q) + vaVam, (A.18)

where Um are special solutions of the inhomogeneous equation and Vam are solutions of the
homogeneous equation

Vam{φj , φm}PB = 0 . (A.19)

The va are arbitrary parameters, which means that some kind of freedom is contained in
the theory. Consider a dynamic variable g(t) with an initial value g(0) ≡ g0: After the
infinitesimal time interval δt one has

g(δt) = g0 + ġδt = g0 + {g,HT }PBδt , (A.20)

where (A.15) was used. Defining

H ′ ≡ H + Umφm and φa ≡ Vamφm , (A.21)

(see (A.18)), one may write

g(δt) = g0 + δt
(
{g,H ′}PB + va{g, φa}PB

)
. (A.22)

Due to (A.19) and the product rule for the Poisson bracket it is obvious that φa is a first-class
constraint2. Furthermore, H ′ is also a first class function by construction (cf. (A.16)). As
noticed earlier, va are arbitrary parameters, which means that g(δt) is ambiguous as well:
Replacing va with some v′a in (A.22) leads to a different value for g(δt), the deviation being

∆g(δt) = δt(va − v′a){g, φa}PB ≡ εa{g, φa}PB . (A.23)

If one interprets (A.23) as a gauge transformation, then the first-class constraints φa are
obviously its generators. In doing two successive gauge transformations of g, one can easily

2{φj , φa}PB = Vam{φj , φm}PB + {φj , Vam}PBφm ≈ 0.
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show that the Poisson bracket {φa, φa′}PB generates a gauge transformation as well. By
applying the product rule one can furthermore show that the Poisson bracket of two first class
constraints is a first-class constraint itself. Hence, {φa, φa′}PB must be a linear combination
of the first-class constraints in the model under consideration. Therefore, we deduce that
all primary and secondary first-class constraints generate gauge transformations3. This fact
should also be taken into account in the equations of motion. We therefore define the
extended Hamiltonian

HE ≡ HT + v′a′φa′ . (A.24)

The generators φa′ are all those which are not already contained in HT and are therefore
first-class secondary constraints. The corresponding equations of motion are now given by

ġ ≈ {g,HE}PB . (A.25)

What about the second class constraints? In order to treat those we first consider the
matrix CAB = {φA, φB}PB where the φA now denote all constraints, and for simplicity we
assume the irreducible case, i.e. that all φA ≈ 0 are independent from each other. Obviously,
detCAB ≈ 0 if there is at least one first class constraint among the φA. Redefining the
constraints as φA → a B

A φB with an appropriate invertible matrix a B
A one can always find

an equivalent description of the constraint surface in terms of constraints γa ≈ 0, χα ≈ 0,
whose Poisson bracket matrix reads weakly

γa χα

γb
χβ

(
0 0
0 Cβα

)
, (A.26)

where Cβα is an antisymmetric matrix that is everywhere invertible on the constraint surface.
In this representation, the constraints are completely split into first and second classes, and
the number of second class constraints is obviously even.

A possible way of treating the second class constraints was invented by Dirac in introducing
the so-called Dirac bracket

{f, g}DB ≡ {f, g}PB − {f, χα}PBC
αβ{χβ, g}PB , (A.27)

where Cαβ is the inverse of Cαβ. Since the extended Hamiltonian is first class, one can easily
verify that HE still generates the correct equations of motion in terms of the Dirac bracket:

ġ ≈ {g,HE}DB . (A.28)

The original Poisson bracket can be discarded after having served its purpose of distinguish-
ing between first-class and second-class constraints and all the equations of the theory can
now be formulated in terms of the Dirac bracket (see ref. [6] for a detailed proof).

A.1.2. Field theoretic extension

We are now interested in the field theoretic extension of the formalism developed above and
illustrate this with an example: free Maxwell theory. The action is given by

S = −1

4

∫
dt

∫
d3xFµνF

µν , (A.29)

3Initially, φa = Vamφm consisted only of primary constraints.
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with the electromagnetic field tensor Fµν defined in Eqn. (1.10). The fields Aµ(t, ~x) corre-
spond to the qn(t) in the previous section. The variable ~x can be interpreted as a “continu-

ous” index. According to (A.6) with Ȧµ ≡ ∂0Aµ =
∂Aµ
∂t , the conjugate momenta are given

by

πµ(~x) =
δ

δȦµ(~x)

(
−1

4

∫
d3x′Fρσ(~x′)F ρσ(~x′)

)
= Fµ0(~x) . (A.30)

In analogy to {qn, pn′}PB = δnn′ we now have

{Aµ(~x), πν(~x′)}PB = δνµδ
3
(
~x− ~x′

)
. (A.31)

Due to antisymmetry of the field tensor, equation (A.30) yields the primary constraint

π0(~x) ≈ 0 . (A.32)

A Legendre transformation, as defined in (A.5), gives us the Hamiltonian of Maxwell theory

H =

∫
d3x

(
πµȦµ +

1

4
F rsFrs +

1

2
F r0Fr0

)
, (A.33)

where Latin indices run from 1 to 3. The constraint (A.32), partial integration and the fact
that Fr0 = −πr yields

H =

∫
d3x

(
1

4
F rsFrs +

1

2
πrπr −A0∂rπ

r

)
. (A.34)

All time derivatives have now been replaced by conjugate momenta enabling us to use the
consistency condition (A.16) to get

0 ≈ π̇0 ≈ {π0, H}PB = ∂rπ
r,

which yields the secondary constraint

∂rπ
r ≈ 0. (A.35)

A further consistency check shows that (A.32) and (A.35) are the only constraints, since
{∂rπr, H}PB = 0. Furthermore, they are first-class because of

{π0(~x), π0(~x′)}PB = 0 , {π0(~x), ∂rπ
r(~x′)}PB = 0 ,

{∂rπr(~x), ∂rπ
r(~x′)}PB = 0 .

Obviously, the Hamiltonian H is first-class as well and therefore can be used for H ′ from
(A.21). The total Hamiltonian HT hence becomes

HT =

∫ (
1

4
F rsFrs +

1

2
πrπr

)
d3x−

∫
A0∂rπ

rd3x+

∫
v(~x)π0d3x , (A.36)

where v(~x) is arbitrary. Inserting A0 into the equation of motion (A.15), we see that v(~x) =
Ȧ0(~x). This means that the time derivative of A0 is ambiguous and that A0 as well as its
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conjugate momentum π0 = 0 are unphysical. Using the “extended” Hamiltonian HE one
may eliminate these unphysical quantities:

HE = HT +

∫
u(x)∂rπ

rd3x . (A.37)

Choosing v(x) = 0 and u′(x) = u(x) − A0 one arrives at the new (simplified) Hamiltonian
(cf. (A.36))

H =

∫ (
1

4
F rsFrs +

1

2
πrπr

)
d3x+

∫
u′(x)∂rπ

rd3x , (A.38)

which still produces the correct equations of motion for all physically relevant variables.

A.2. Natural Units

In general it is always convenient to use a unit system where the formulae under consideration
are rendered particularly simple, i.e. with only a minimal set of constants. In particle
physics this is achieved by setting the velocity of light c and Planck’s constant ~ equal to 1
and dimensionless:

c = ~ = 1 . (A.39)

Quantities computed in these units can always be converted to SI units at a later point, if
desired. However, let us take a closer look at the properties of these so-called natural units.
From the speed of light being now dimensionless it follows immediately that

1 = [c] =
[length]

[time]
⇒ [length] = [time] . (A.40)

Time and length now have the same dimension. This also becomes clear when considering
the relativistic formulation of space-time where the four-vector xµ = (ct, ~x) with c = 1.

Similarly, one finds:

1 = [~] = [energy][time] ⇒ [time] =
1

[energy]
. (A.41)

So time (and hence length) now has dimension of energy−1. In particle physics one obviously
has to deal with the energy of particles, which is to small for the unit Joule to be practical.
Therefore, one uses the unit of electron volts instead, where

1eV = 1, 602177 · 10−19J , (A.42)

which corresponds to the kinetic energy an unbounded electron gets when accelerated by
an electrostatic potential of 1 Volt (Volt = Joule/Coulomb, cp. charge of an electron from
Table A.1).

From E = mc2 follows furthermore that mass now has dimension of energy as well, i.e.

[mass] = [energy], (A.43)

and if we consider Boltzmann’s constant kB = 1, temperature also has the dimension of
energy ([temperature] = [energy]). In the same way, µ0 = 1 and dimensionless leads to
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voltage and current having the same units (cp. Table A.1). From the relation ε0 = 1
c2µ0

, it
follows additionally, that the dielectric constant in vacuum ε0 = 1 and dimensionless as well
in natural units.

Typical values are:
10−2eV : thermal energy of a particle at room temperature
some eV : chemical reactions
5, 11 · 105eV = 511keV : rest mass of an electron
some MeV (i.e. 106eV ): nuclear reactions
938MeV = 0, 938GeV : rest mass of a proton

speed of light: c = 299792458ms
Planck’s constant: h = 6, 62607 · 10−34Js

~ = h
2π = 1, 05457 · 10−34Js

unit charge: e = 1, 602177 · 10−19C (electron: q = −e)
gravitational constant: G = 6.673 · 10−11 m3

kg s2

Boltzmann’s constant: kB = 1, 3807 · 10−23 J
K

magnetic constant: µ0 = 4π · 10−7 V s
Am

Table A.1.: some constants of nature

A.3. Dimensional regularization

We follow the derivation given in reference [3] on pages 382-385: Working in n-dimensional
Minkowski space we start with integrals of the type

In(q) =

∫
dnk

(k2 + 2kq − L2)α
, (A.44)

where k = (k0, r, φ, θ1, θ2, . . . , θn−3) in polar coordinates and the volume element is therefore
given by

dnk = dk0r
n−2drdφ

n−3∏
i=1

sini θidθi . (A.45)

Shifting variables k′µ = kµ + qµ and using

2π∫
0

dφ
n−3∏
i=1

π∫
0

sini θidθi =
2π

(n−1)
2

Γ
(
n−1

2

) , (A.46)

we arrive at

In(q) =
2π

(n−1)
2

Γ
(
n−1

2

) ∞∫
−∞

dk0

∞∫
0

rn−2dr(
k2

0 − r2 − (q2 + L2)
)α , (A.47)

where the primes have been dropped. Since the integrand depends only quadratically on k0

we can replace
∞∫
−∞

dk0 → 2
∞∫
0

dk0. To evaluate the remaining integrals we use the Euler beta
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function

B(x, y) ≡ Γ(x)Γ(y)

Γ(x+ y)
= 2

∞∫
0

dtt2x−1(1 + t2)−x−y ,
<(x) > 0
<(y) > 0

(A.48)

Considering

x =
1 + β

2
, y = α− 1 + β

2
, t =

s

M
, (A.49)

leads to

∞∫
0

ds
sβ

(s2 +M2)α
=

Γ
(

1+β
2

)
Γ
(
α− 1+β

2

)
2 (M2)α−(1+β)/2 Γ(α)

, (A.50)

and if we identify β = 0 and M2 = −r2 − (q2 + L2) we can use this formula to perform the
integration over k0 in (A.47):

In(q) =
2π

(n−1)
2

Γ
(
n−1

2

) ∞∫
0

dr
rn−2Γ

(
1
2

)
Γ
(
α− 1

2

)
(−r2 − (q2 + L2))α−1/2 Γ(α)

. (A.51)

By identifying α′ = α − 1
2 , β = n − 2 and M2 = q2 + L2 we can once again use formula

(A.50) to perform the remaining integral:

In(q) = (−1)
1
2
−α π

n
2

Γ(α)

Γ
(
α− n

2

)
(q2 + L2)α−

n
2

= (−1)
n
2 iπ

n
2

Γ
(
α− n

2

)
Γ(α)

(−q2 − L2)
n
2
−α . (A.52)

Therefore the result is

In(q) =

∫
dnk

(k2 + 2kq − L2)α
= (−1)

n
2 iπ

n
2

Γ
(
α− n

2

)
Γ(α)

(−q2 − L2)
n
2
−α . (A.53a)

Differentiating both sides with respect to qµ and redefining α as well as using the property
of the Gamma-function xΓ(x) = Γ(1 + x) leads to

Iµn (q) =

∫
dnk

kµ

(k2 + 2kq − L2)α
= (−qµ)In(q) , (A.53b)

and further differentiation with respect to qν yields

Iµνn (q) =

∫
dnk

kµkν

(k2 + 2kq − L2)α
=

(
qµqν +

gµν
(
−q2 − L2

)
2α− n− 2

)
In(q) . (A.53c)

A useful trick in order to bring integrals appearing in typical Feynman graphs into the
form In(0) or Iµνn (0) as defined above, is given by Feynman’s formula

1

ab
=

1∫
0

dz

(az + b(1− z))2 . (A.54)

The proof of this integral formula is straightforward: simply substitute z′ = (a− b)z − b.
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