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Foreword

These lecture notes provide an introduction to quantum field theories on non-commutative
spaces. They are mainly based on the review articles [1–6]. In Chapter 1 we start with
some motivations for studying such theories and introduce the so-called Landau problem
and its relation to the quantum Hall effect (following [2, 7, 8]). We then recall some basic
properties of C∗-algebras [1]. In Chapter 2 we deal with models with constant coordinate
commutator. We mostly follow [2, 6] with amendments from [3, 4], except for Section 2.5
which follows [5, 9]. Chapter 3 finally deals with more general coordinate commutators
and mostly follows the review article [6] with amendments from [10, 11] (Section 3.3), [12]
(Section 3.4) and [13] (Section 3.6).

The interested reader is encouraged to consult the references mentioned above as well as
the books [14, 15] for further details and references to the original literature.

c© D.N. Blaschke, January 4, 2012
E-mail: daniel.blaschke@univie.ac.at
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1 Introduction

1.1 Motivation

Many arguments can be given to motivate studying non-commutative geometry. The list
below hence only represents a brief overview.

1. Historically, the idea of a “minimal length” was initially introduced in order to smear
out point-like interactions as UV regularization in QFTs. The first according publi-
cation was due to H. Snyder, a former student of Oppenheimer, in 1946/47. However,
it took a long time (i.e. until the early 1990s) until this idea was revived.

2. Coordinate non-commutativity appears in some cases, where one would not expect
it at first: for example, when considering a point-like particle in a strong external
magnetic field. This is known as the “Landau problem”, which is in fact related to
the quantum Hall effect, and will be discussed subsequently in Section 1.2.

3. Mathematically, General Relativity and QFT are incompatible as can be seen from
the Einstein equations:

Rµν −
1

2
Rgµν = 〈Tµν〉 . (1.1)

On the left hand side we have the classical Einstein tensor describing space-time
curvature induced by the energy momentum tensor Tµν . On the other hand, we know
that matter is very well described by quantum field theory, and hence Tµν should be
an operator (hence the vev on the r.h.s. above). The situation is resolved by arguing
that quantum effects can be neglected when considering long distances and replacing
Tµν with its classical counterpart. However, there definitely must be situations where
both gravity and quantum effects will play a role, i.e. near black holes, so that a more
general quantum theory of gravity is needed. Perhaps this argument represents the
strongest hint towards quantized space-time.

Several theories of, or incorporating, quantum gravity exist today, although none of them
could so far be verified by experiments. The ones that are most actively pursued in modern
physics are String Theory, Quantum Loop Gravity, and Non-Commutative Quantum Field
Theories. Here, we shall consider the latter approach.

At this point we should also mention some further pioneers of non-commutative geome-
try and quantum field theories thereon, namely Groenewold (1946), Moyal (1949), Madore
(1992), Connes (1994), Filk (1996) and others. Additionally, people like Seiberg, Witten,
Douglas, Schwarz and others studied non-commutative geometries in connection with string
theory. For example, the effective low-energy action on D-branes with strong B-field back-
ground, can become non-commutative. In fact, the mechanism is not unlike the one in the
Landau problem (cf. Section 1.2). In Section 2.4 we will study the so-called Seiberg-Witten
map which dates back to 1998 and has its origin in the string theory ideas above. For
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further details and references on historic developments in this field, the reader is referred to
the review articles [2–4, 6].

Having motivated space-time quantization, a natural question to ask is about the order of
magnitude of an according uncertainty principle. A natural limit in the experimental length
resolution can be given by the following argument which is due to Doplicher, Fredenhagen
and Roberts (1994): Without specifying the required experimental setup, it is clear from
quantum theory that a better length resolution always requires higher energy. In fact,
the energy required for a resolution of the order of the Planck length turns out to have a
Schwarzschild radius of the Planck length which is given by

∆xµ ' λp =

√
G~
c3
' 10−33cm . (1.2)

Hence, distances beyond the Planck length can never be resolved experimentally, and it is
natural to consider λp as a lower bound for a new uncertainty principle such as ∆x∆y & λ2

p.
An upper bound is given by the fact that we have not seen any effects of quantum space-time
in experiments so far. Since this bound is constantly being lowered by new observations and
some of these are passionately debated, we will not state an explicit order of magnitude at
this point.

Exercise 1 Consider an energy E whose de Broglie wavelength λ equals the Schwarzschild
radius of E, and verify that λ must then be of the order of the Planck length (1.2) and E of
the order of the Planck energy!

1.2 The Landau-problem

We consider a charged particle in a constant magnetic field. The action is given by

S = −m
∫
ds+ e

∫
Aµdx

µ , (1.3)

of which we consider the non-relativistic approximation ds ≈ (1 − 1
2 ~̇x

2)dt. Furthermore,
we consider the form Ai = −B/2εijxj with i, j ∈ [1, 2] (and A0 = A3 = 0) for the vector
potential Aµ in order to have the constant magnetic field B point in the x3 direction. Hence,
we obtain

S =

∫
dt

(
1

2
m~̇x2 − e ~A~̇x

)
. (1.4)

A Legendre transformation leads to the Hamiltonian

H(~x, ~p) = ~p~̇x− L(~x, ~̇x) =
1

2m

(
~p+ e ~A

)2
, (1.5)

where ~p = m~̇x−e ~A is the canonical momentum. Upon introducing the physically observable
momentum ~π = m~̇x = ~p+e ~A, the Hamiltonian takes the particularly simple form H = 1

2m~π
2.

When quantizing the system, i.e. when introducing canonical commutation relations[
x̂j , p̂i

]
= iδji , we find that the physical momentum operators π̂i have a non-vanishing

quantum commutator

[π̂i, π̂j ] = ieBεij , (1.6)
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meaning that the momentum space in the presence of a background magnetic fieldB becomes
non-commutative. Due to (1.6) we may define creation and annihilation operators as the
linear combinations

a =
1√
2eB

(π1 + iπ2) , a+ =
1√
2eB

(π1 − iπ2) ,[
a, a+

]
= 1 . (1.7)

Hence we may once more rewrite the Hamiltonian as

H =
eB

m

(
a+a+

1

2

)
, (1.8)

and now we can see that its spectrum is that of a harmonic oscillator, namely

En =
eB

m

(
n+

1

2

)
. (1.9)

These energy eigenvalues are called the Landau levels.
Spacial non-commutativity arises in the limit m→ 0, i.e.[

x̂i, x̂j
]

=
2i

eB
εij . (1.10)

In this limit the theory becomes topological because the Hamiltonian vanishes and there
are no propagating degrees of freedom. In fact, the limit m → 0 above corresponds to the
projection onto the lowest Landau level. Equivalently, one may consider a large magnetic
field, i.e. B →∞.

Further insight can be gained by introducing “guiding center coordinates” Ri = 1
2x

i −
1
eB ε

ijpj with the commutator given by

[
Ri, Rj

]
=

iεij

eB
,

[
πi, Rj

]
= 0 . (1.11)

They can be combined into the two oscillators

b+ =
eB√

2
(Rx + iRy) , b =

eB√
2

(Rx − iRy) , (1.12)

and the lowest Landau level wave functions are obtained by acting with b+ on the ground
state of the according Hamiltonian (1.8).

The Quantum Hall Effect
The so-called integer quantum Hall effect can be observed experimentally in a setup as
above with strong magnetic field B and very low temperature. It is then observed that
the Hall resistance is quantized, i.e. as a function of n/B, where n denotes the electron
number density, the off-diagonal components of the conductivity tensor σij exhibit “steps”:
σ12 = −σ21 = kie2/h where k is an integer, namely the number of filled Landau levels. At
each of these “plateaus” the diagonal elements σ11 = σ22 = 0 — see Figure 1.1.

Additionally, there is also the fractional quantum Hall effect which can be observed under
the additional condition that the interactions between the electrons dominate over the effect
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Figure 1.1: c©Glenton Jelbert. The graph on the l.h.s. depicts Fermi energy vs. density of
states while the one on the r.h.s. shows Hall resistance ρxy and resistance ρxx as
functions of the magnetic field. (Note that the conductivity tensor σij is given
by the inverse of ρij .)

of disorder. It is similar to the integer quantum Hall effect except that k takes specific
rational values 1/3, 2/3, 2/5, . . . (but no values with even denominators such as 1/2, 1/4),
i.e. one observes “plateaus” at partially filled Landau levels. Especially the fractional
quantum Hall effect is not fully understood to date, and one hopes that an explanation
might be found using techniques from non-commutative geometry. In fact, as suggested by
Susskind 2001, a description in terms of a non-commutative Chern-Simons model could be
successful in this respect.

1.3 Non-commutative space-times and C∗-algebras

Let us specify what is meant by the notion of “non-commutative geometry”. It is known
that there is a correspondence between geometric spaces and commutative C∗-algebras,
which is captured by the Gel’fand-Naimark theorem. Hence, a natural definition of a non-
commutative geometry would be in terms of a non-commutative C∗-algebra. Furthermore,
“points” are identified with pure states in non-commutative geometry since in such a setting
the notion of a point no longer makes sense. We therefore start by reviewing the basic
properties of a general C∗-algebra:

Let A be an algebra over the field of complex numbers C (i.e. think of a vector space over
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C) and a product A×A 7→ A which is distributive over addition,

(a, b) 7→ ab ∈ A ,
a(b+ c) = ab+ ac ,

(a+ b)c = ac+ bc , ∀a, b, c ∈ A . (1.13)

The algebra A should also have a unit element denoted by 1. If A admits an anti-linear
involution ∗ : A 7→ A with the properties

a∗∗ = a , (ab)∗ = b∗a∗ ,

(αa+ βb)∗ = ᾱa∗ + β̄b∗ , (1.14)

for a, b ∈ A and α, β ∈ C, and where bar denotes complex conjugation, one speaks of a
∗-algebra. We are furthermore interested in normed algebras, and hence consider a norm
‖ · ‖ : A 7→ R having the properties

‖a‖ ≥ 0 , ‖a‖ = 0⇔ a = 0 , ‖αa‖ = |α|‖a‖ ,
‖a+ b‖ ≤ ‖a‖+ ‖b‖ , ‖ab‖ ≤ ‖a‖‖b‖ . (1.15)

This defines the so-called norm topology, and corresponding neighbourhoods of a ∈ A are
given by

U(a, ε) = {b ∈ A | ‖a− b‖ < ε} , ε > 0 . (1.16)

A Banach ∗-algebra is a normed ∗-algebra where ‖a∗‖ = ‖a‖ and which is compact. Imposing
the additional condition

‖a∗a‖ = ‖a‖2 , ∀a ∈ A , (1.17)

we finally arrive at a C∗-algebra.
A left ideal (resp. right ideal) I is a proper, norm closed subalgebra of A if a ∈ A and

b ∈ I imply that ab ∈ I (resp. ba ∈ I). In fact, any ∗-ideal (containing the ∗ of its elements)
is automatically two-sided (i.e. left and right). Furthermore, if A is a C∗-algebra, then the
quotient A/I is also a C∗-algebra.

A C-linear map π : A 7→ B between two C∗-algebras A and B satisfying the conditions

π(ab) = π(a)π(b) , π(a∗) = π(a)∗ , ∀a, b ∈ A , (1.18)

is called a ∗-morphism, and if it is also bijective, one has a ∗-isomorphism.
A representation of a C∗-algebra A is a pair (H, π) where H is a Hilbert space and π is

a ∗-morphism

π : A 7→ B(H) , (1.19)

and where B(H) is the C∗-algebra of bounded operators of H. It is called faithful if ker(π) =
{0} so that π is an isomorphism, and irreducible if the only closed subspaces of H which
are invariant under the action of π(A) are the trivial subspaces {0} and {H}.

Finally, two representations (H1, π1) and (H2, π2) are equivalent if there exists a unitary
operator U : H1 7→ H2 such that

π1(a) = U∗π2(a)U . (1.20)
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Now consider the special case of a commutative C∗ algebra A. In that case, clearly every
irreducible representation is one-dimensional and hence π : A 7→ C with π(1) = 1, ∀π ∈ Â,
where Â denotes the space of equivalence classes of irreducible representations of A called
the structure space of A. For example, suppose that the algebra A is generated by N -
commuting self-adjoint1 elements x1, . . . , xN . Then the structure space Â can be identified
with a compact subset of RN by the map

π ∈ Â 7→ (π(x1), . . . , π(xN )) ∈ RN . (1.21)

For further details on C∗-algebras we refer the interested reader to the literature, espe-
cially [1] as well as [14, 15].

Having now very briefly introduced C∗-algebras, we proceed with an overview over various
choices of non-commutative algebras generated by “coordinates” x̂i which now are promoted
to Hermitian operators (denoted by hats) on some Hilbert space H. More precisely, we
consider the algebra of formal power series divided by an ideal I of relations generated by
the commutator of the coordinate functions

[
x̂i, x̂j

]
6= 0, i.e.

A =
C〈x̂1, . . . , x̂N 〉

I
. (1.22)

Commutators of coordinates
The commutator of the coordinates has the general form

[x̂i, x̂j ] = iθij(x̂) , (1.23)

where θij(x̂) might be any function of the generators with θij = −θji and satisfying the
Jacobi identity. Most commonly, the commutation relations are chosen to be either constant,
linear or quadratic in the generators. In the so-called canonical case the relations are
constant, i.e.

[x̂i, x̂j ] = iθij = const . (1.24)

We will discuss this case in the following Section 2. The linear or Lie-algebra case

[x̂i, x̂j ] = iλijk x̂
k , (1.25)

where λijk ∈ C are the structure constants, basically has been discussed in two different
settings, namely fuzzy spaces and κ-deformation. These will be briefly discussed in Sections
3.3 and 3.4, respectively. The third commonly used choice is a quadratic commutation
relation, [

x̂i, x̂j
]

=
(1

q
R̂ijkl − δ

i
lδ
j
k

)
x̂kx̂l , (1.26)

where R̂ijkl ∈ C is the so-called R̂-matrix, corresponding to quantum groups. Section 3.5 will
finally be devoted to this case.

Additionally, various choices of commutators
[
x̂i, p̂j

]
and [p̂i, p̂j ] are found in the litera-

ture. In the following section, however, we start with the simplest case of constant θij and
vanishing [p̂i, p̂j ].

1An element is called self-adjoint if xi = x∗i .
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2 Models with constant space-time
commutator

2.1 Weyl quantization

We consider a non-commutative space where the coordinates xµ are replaced by the Hermi-
tian generators of a non-commutative C∗-algebra which obey the commutation relations

[x̂µ, x̂ν ] = iθµν , (2.1)

where θµν is a constant real-valued antisymmetric D ×D matrix with dimension of length
squared. Weyl quantization1 provides a one-to-one correspondence between the algebra of
fields on RD and the algebra of according operators. (It may be thought of as an analogue of
the operator-state correspondence of local QFT.) For this purpose, consider Euclidean RD

and fields living in an appropriate Schwartz space of functions of sufficiently rapid decrease
at infinity, i.e. characterized by the condition

sup
x

(1 + |x|2)k+n1+...+nD |∂n1
1 . . . ∂nDD f(x)|2 <∞ , k, ni ∈ N . (2.2)

This implies that any function f(x) may be described by its Fourier transform

f̃(k) =

∫
dDx e−ikµxµf(x) . (2.3)

We introduce a functions Weyl symbol by

Ŵ[f ] :=

∫
dDx f(x)∆̂(x) , ∆̂(x) =

∫
dDk

(2π)D
eikµx̂µe−ikµxµ , (2.4)

where we have chosen the symmetric Weyl ordering prescription for operators. The operator
∆̂(x) is Hermitian and describes a mixed basis for operators and fields. Hence, we may
interpret the field f(x) as the coordinate space representation of the Weyl operator Ŵ[f ].
Additionally we define an anti-Hermitian linear derivation operator ∂̂µ by the commutation
relations [

∂̂µ, x̂
ν
]

= δνµ ,
[
∂̂µ, ∂̂ν

]
= 0 , (2.5)

from which it follows that[
∂̂µ, ∆̂(x)

]
= −∂µ∆̂(x) ,

[
∂̂µ, Ŵ[f ]

]
= Ŵ[∂µf ] ,

ev
µ∂̂µ∆̂(x)e−v

µ∂̂µ = ∆̂(x+ v) , v ∈ RD . (2.6)

1In fact, Weyl quantization also works when θµν is not constant.
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The last relation tells us that translation generators can be represented by unitary operators

ev
µ∂̂µ , and furthermore that the trace of ∆̂(x) (being cyclic) must be independent of x.

Choosing the normalization Tr∆̂(x) = 1, it follows that

TrŴ[f ] =

∫
dDx f(x) . (2.7)

The products of operators ∆̂(x) may be computed by using the Baker-Campbell-Hausdorff
formula. In our case of constant θµν we simply have

eikµx̂µeik′ν x̂
ν

= e−
i
2
kµθµνk′νei(kµ+k′µ)x̂µ , (2.8)

and hence

∆̂(x)∆̂(y) =

∫∫
dDk

(2π)D
dDk′

(2π)D
ei(kµ+k′µ)x̂µe−

i
2
kµθµνk′νe−ikµxµ−ik′µy

µ
. (2.9)

Since Treikµx̂µ = (2π)DδD(kµ) due to our normalization Tr∆̂(x) = 1, one easily derives the
trace of the above expression:

Tr∆̂(x)∆̂(y) = δD(x− y) , (2.10)

i.e. the ∆̂(x) form an orthonormal set, and along with the definition of the Weyl symbol
Ŵ[f ], it follows that the map f(x) 7→ Ŵ[f ] is invertible. Hence2

f(x) = Tr
(
Ŵ[f ]∆̂(x)

)
. (2.11)

Having an isomorphic map between Weyl symbols and according Schwartz functions, we can
in practise work with functions and a deformed product instead of with operators, provided

Ŵ[f ]Ŵ[g] = Ŵ[f ? g] , (2.12)

with ? denoting a deformed product. In order to verify this and determine the explicit
form of the ?-product, we consult (2.4) and (2.9) leading to the so-called Groenewold-Moyal
?-product

f(x) ? g(x) =

∫∫
dDk

(2π)D
dDk′

(2π)D
f̃(k)g̃(k′)e−

i
2
kµθµνk′νe−i(kµ+k′µ)xµ

= f(x)e
i
2

←−
∂µθµν

−→
∂νg(x) , (2.13)

where the second line is to be understood as the formal expression for a Taylor series expan-
sion. This star product is associative but non-commutative and is defined for constant (pos-
sibly degenerate) θµν . We should also mention further possibilities of writing Eqn. (2.13),
namely

f(x) ? g(x) =

∫
dDk

(2π)D

∫
dDzf(x+ 1

2θk)g(x+ z)eikµzµ

=
1

πD|det θ|

∫∫
dDy dDzf(x+ y)g(x+ z)e−2iyµθ−1

µν z
ν
, (2.14)

2In fact, a function f(x) obtained in this way from a quantum operator is usually called a Wigner distribution
function, and therefore the map defined using ∆̂(x) provides a one-to-one correspondence between Wigner
fields and Weyl operators. One hence speaks of the “Weyl-Wigner correspondence”.
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where the second line is only true if θµν is invertible. The last version of the star product
enables us to compute the star product of two Dirac delta functions:

δD(x) ? δD(x) =
1

πD| det θ|
, (2.15)

i.e. the star product of two point sources becomes infinitely non-local. This means that
very high energy processes can have important long-distance consequences.

Note the following properties:

[xµ ?, f(x)] = iθµν∂νf(x) ,

[f(x) ?, g(x)] = 2if(x) sin
(

1
2

←−
∂µθ

µν−→∂ν
)
g(x) ,

{f(x) ?, g(x)} = 2f(x) cos
(

1
2

←−
∂µθ

µν−→∂ν
)
g(x) , (2.16)

as well as the extension

f1(x) ? · · · ? fm(x) =

∫∫∫
dDk1

(2π)D
· · · d

Dkm
(2π)D

e
i
m∑
i=1

kix
f̃1(k1) · · · f̃m(km)e

− i
2

m∑
i<j

kiθkj
. (2.17)

Exercise 2 Verify Eqns. (2.14), (2.16) and (2.17) by explicit computations!

Furthermore note that due to cyclicity of the operator trace, the integral

Tr
(
Ŵ[f1] · · · Ŵ[fm]

)
=

∫
dDxf1(x) ? · · · ? fm(x) , (2.18)

is invariant under cyclic permutations of the fi. Especially, one easily verifies that∫
dDxf1(x) ? f2(x) =

∫
dDxf1(x)f2(x) . (2.19)

Finally, one also has

δ

δf1(y)

∫
dDx (f1 ? f2 ? · · · ? fm) (x) = (f2 ? · · · ? fm) (y) , (2.20)

which follows from δf1(x)
δf1(y) = δD(x− y) and Eqn. (2.17).

Exercise 3 Check relations (2.18), (2.19) and (2.20)! (Hint: Consider an inverse Fourier

transformation to compute δf̃1(k)
δf1(y) = e−ikµyµ which then leads to (2.20).)

2.2 Non-commutative scalar fields and UV/IR mixing

Applying the Weyl quantization procedure of Section 2.1 to φ4 theory in Euclidean R4, one
arrives at the following action3:

S = Tr

(
1

2

[
∂̂µ, Ŵ[φ]

]2
+
m2

2
Ŵ[φ]2 +

λ

4!
Ŵ[φ]4

)
=

∫
d4x

(
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
. (2.21)

3Minkowski space-time with non-commutative time is another story since time ordering needs to be redefined
in that setting. We will come back to that issue in Section 2.7.
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The first one to consider this action was T. Filk (1996) who derived the corresponding
Feynman rules, noticing that — at least in Euclidean space — the propagator is exactly the
same as in commutative space, i.e.

Gφφ(k) =
1

(k2 +m2)
, (2.22)

while the vertex gains phase factors (in this case a combination of cosines) in the momenta:

V (k1, k2, k3, k4) =
λ

3
(2π)4δ4 (k1 + k2 + k3 + k4)

[
cos

(
1

2
k1k̃2

)
cos

(
1

2
k3k̃4

)

+ cos

(
1

2
k1k̃3

)
cos

(
1

2
k2k̃4

)
+ cos

(
1

2
k1k̃4

)
cos

(
1

2
k2k̃3

)]
, (2.23)

where we have introduced the short-hand notation k̃µ := θµνkν . As a consequence, new
types of Feynman graphs appear: In addition to the ones known from commutative space,
where no phases depending on internal loop momenta appear and which exhibit the usual
UV divergences, so-called non-planar graphs come into the game which are regularized by
phases depending on internal momenta. Other authors performed explicit one-loop cal-
culations and discovered the infamous UV/IR mixing problem: Due to the phases in the
non-planar graphs, their UV sector is regularized on the one hand, but on the other hand
this regularization implies divergences for small external momenta instead.

For example the two point tadpole graph (in 4 dimensional Euclidean space) is approxi-
mately given by the integral

Π(Λ, p) =
λ

6

∫
d4k

(2π)4

2 + cos(kp̃)

k2 +m2
≡ Πplan(Λ) + Πn-pl(p) . (2.24)

The planar contribution is as usual quadratically divergent in the UV cutoff Λ, i.e. ΠUV ∼
Λ2, and the non-planar part is regularized by the cosine. Using Schwinger parametrization
one easily computes

Πn-pl =
λ

12

∫
d4k

(2π)4

∑
η=±1

∞∫
0

dα exp
(
−α(k2 +m2) + iηkp̃

)

=
λ

6(4π)2

∞∫
0

dα

α2
exp

(
−αm2 − p̃2

4α

)
=

λ

24π2

√
m2

p̃2
K1

(√
p̃2m2

)
≈ λ

24π2

(
1

p̃2
+
m2

2
ln |p̃2m2|

)
+O(1) , (2.25)

where K1 is the modified Bessel function and in the last line we have expanded the expression
for small p̃2, i.e. 1

zK(z) ≈ 1
z2 + 1

2 ln z +O(1).
This shows that the original UV divergence is not present any more, but reappears when

p̃ → 0 (where the phase is 1) representing a new kind of infrared divergence. Since both
divergences are related to one another, one speaks of “UV/IR mixing”. It is this mixing
which renders the action (2.21) non-renormalizable at higher loop orders. The reason is that
the IR divergence cannot be absorbed by a mass redefinition, and hence a chain of such two
point tadpole graphs inserted into a higher loop graph will lead to divergences of arbitrary
order.
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The Grosse-Wulkenhaar model.
In 2004, the first renormalizable scalar field model in non-commutative Euclidean R4

θ was
introduced by H. Grosse and R. Wulkenhaar. Their trick was to add a harmonic oscillator-
like term to the action (2.21), i.e.

S[φ] =

∫
d4x

(
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ+ 2Ω2(x̃µφ) ? (x̃µφ) +

λ

4!
φ ? φ ? φ ? φ

)
, (2.26)

where x̃µ := (θ−1)µνx
ν . This action cures the infamous UV/IR mixing problem and has

been proved to be renormalizable to all orders in perturbation theory. This was first done
by the authors employing a “matrix base”, and later confirmed by V. Rivasseau et al. using
a different tool referred to as Multiscale Analysis. Additionally, this model has another nice
feature compared to the usual scalar model in commutative space-time: it has no Landau
ghost4. Moreover, the β-function vanishes at the self-dual point Ω = 1 — cp. Eqn. (2.29).
Hence, this is not only the first renormalizable model on a non-commutative space, it is also
an example of improved behaviour in the non-commutative setting.

Let us discuss it in some more detail: The propagator of the model is the inverse of the
operator (−∆ + 4Ω2x̃2 +m2), and is known as the Mehler kernel

KM (x, y) =

∞∫
0

dα
1

4π2ω sinh2 α
e−

1
4ω (u2 coth α

2
+v2 tanh α

2 )−ωm2α , (2.27)

with ω = θ
2Ω , u = x− y and v = x+ y.

It is also illuminating to rewrite the Grosse-Wulkenhaar (GW) action (2.26) as

S[φ] =

∫
d4x

(
1

2
φ ? [x̃µ ?, [x̃µ ?, φ]] +

m2

2
φ ? φ+

Ω2

2
φ ? {x̃µ ?, {x̃µ ?, φ}}+

λ

4!
φ ? φ ? φ ? φ

)
,

(2.28)

using the properties [xµ ?, f(x)] = iθµν∂νf(x) and {xµ ?, f(x)} = 2xµf(x) of the star product.
Written in this way, we see a symmetry between commutators and anticommutators, which
in turn corresponds to a symmetry between x-space and momentum space: By exchanging
x̃↔ p one can see that the action (2.26) stays form invariant:

S[φ;m,λ,Ω] 7→ Ω2S[φ;
m

Ω
,
λ

Ω2
,

1

Ω
] . (2.29)

This symmetry is called Langmann-Szabo duality. Also notice, that the Mehler kernel (2.27)
shares this property. Furthermore, Eqn. (2.28) implies that the GW model may equivalently
be formulated as a matrix model, i.e. where x and φ are matrices.

In fact, something similar was done in the original paper, namely the fields were expanded
according to

φ(x) =
∑

m,n∈ND/2
φmnbmn(x) , (2.30)

4In the process of renormalizing the coupling of models such as φ4 theory or QED in ordinary commutative
space-time, one finds unphysical poles at very large but finite energies. This is referred to as the Landau
ghost problem.
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and the star products is represented by a matrix product. We shall not go into much detail
of this technique, but point out another nice feature of the matrix ansatz: lines in Feynman
graphs are replaced by ribbons, where the two sides represent matrix indices. This very
illustrative way of drawing the Feynman graphs of the non-commutative GW model on a
two dimensional Riemann surface exhibits a new way of classifying types of graphs based on
their topology. One distinguishes between planar and non-planar, as well as between regular
and irregular graphs5: In particular, one has genus g = 0 for planar and g ≥ 1 for non-
planar graphs. Planar graphs are then subclassified into regular, if their number of “broken
faces” B = 1, and irregular if B ≥ 2. The genus is related to the Euler characteristic χ and
may be determined from

χ = 2− 2g = V − I + F , (2.31)

where V denotes the number of vertices, I the number of internal propagators (double lines)
and F is the number of “faces” (i.e. single lines) — see e.g. [4] for further details.

The scalar 1/p2 model.
An alternative approach to tackle the problem of UV/IR mixing was proposed by Gurau,
Magnen, Rivasseau and Tanasa (2008). The main idea is to replace the GW-oscillator term
by the non-local term

Snloc[φ] = −
∫
d4xφ(x) ?

a2

θ2�x
? φ(x) , (2.32)

where a is a dimensionless constant. The practical motivation for this is clearly to provide
a counter term for the expected quadratic IR divergence in the external momentum.

The action (2.21) including the non-local addition (2.32) in momentum space reads

S[φ] =

∫
d4k

[
1

2

(
kµφ(−k)kµφ(k) +m2φ2 + a2φ(−k)

1

k̃2
φ(k)

)
+
λ

4!
F
(
φ?4
)]

, (2.33)

where F
(
φ?4
)

denotes the Fourier transform of φ?4. Variation of the bilinear part of the
action (2.33) with respect to φ immediately leads to the propagator

G(k) =
1

k2 +m2 + a2

k̃2

. (2.34)

This Green function is the core achievement of the approach by Gurau et al. since it features
a damping behaviour in the IR while not affecting the UV region, i.e.

lim
k→0

G(k) = lim
k→∞

G(k) = 0, ∀a 6= 0 . (2.35)

In Multiscale Analysis this also allows the propagator to be bounded from above by a
constant which is a basic ingredient leading to the renormalizability of the model. In contrast

5 In fact, there is some confusion in the literature concerning the term “non-planar”: While some authors
use the topological classification, others use the term for any graph exhibiting crossing of internal lines,
which is equivalent to saying their UV sector is regularized by the typical phase factors. This feature,
however, is also shared by planar irregular graphs in the topological classification — an example would be
the IR divergent two point tadpole graph (2.25) discussed above, which is called either “planar irregular”
or “non-planar” depending on the classification scheme.
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to the propagator, the vertex functional is not altered in comparison to the version (2.21) of
φ?44 theory. The damping effect of the propagator (2.34) becomes obvious when considering
higher loop orders. An n-fold insertion of the divergent one-loop result6 (2.25) into a single
large loop can be written as

Πn np-ins.(p) ≈ λ2

∫
d4k

eikθp(
k̃2
)n [

k2 +m2 + a′2

k2

]n+1 . (2.36)

For the model where a = 0, the integral of Eqn. (2.36) involves an IR divergence for n ≥ 2,
because the integrand scales as (k2)−n for k2 → 0. In contrast, for the 1/p2 model (where
a 6= 0), the integrand behaves like

1(
k̃2
)n [

a′2

k2

]n+1 =
k̃2

(a′2)n+1 , (2.37)

i.e. it scales like k̃2 independent of the order n.

2.3 Introducing gauge fields on θ-deformed spaces

A basic ingredient in the standard model of particle physics is the concept of Lie algebra
valued gauge fields. In particular, the Lie groups U(1), SU(2) and SU(3) are needed, and
obviously gauge transformations need to form a closed Lie algebra, i.e.

δαδβ − δβδα = δ−i[α,β] , [α, β] = iαaβbfabcT c , (2.38)

where α = αaT a, β = βaT a, and T a denote the generators of the Lie group in an appropriate
matrix representation. However, in the non-commutative case, things are not that simple.
To see the differences, we start by extending the Weyl quantisation map to matrix valued
functions α(x) = αa(x)T a using the tensor product between the coordinate and matrix
representations:

Ŵ[α] :=

∫
dDx∆̂(x)⊗ α(x) , (2.39)

where ∆̂(x) is defined Eqn. (2.4). We may then compute the star commutator of two Lie
algebra valued functions (e.g. gauge parameters) α, β ∈ SU(N), and find that the result is
not Lie algebra valued any more:

[α ?, β] =
1

2

{
αa ?, βb

}[
T a, T b

]
+

1

2

[
αa ?, βb

]{
T a, T b

}
/∈ SU(N) . (2.40)

The reason is that the star commutator
[
αa ?, βb

]
6= 0, and as a result a term proportional to{

T a, T b
}

appears. However, the r.h.s. of Eqn. (2.40) is an element of the enveloping algebra
(in this example U(N)). It has in fact been shown that only enveloping algebras, such as
U(N) or O(N) and USp(2N), survive the introduction of a deformed product (in the sense
that commutators of algebra elements are again algebra elements), while e.g. SU(N) does

6Note that, for the sake of simplicity, we neglect any effects due to recursive renormalization, and approxi-
mate the insertions of irregular single loops by the most divergent (quadratic) IR divergence.
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not. Despite this fact, star-commutators in general do not vanish. Hence, any Groenewold-
Moyal deformed gauge theory is of the non-Abelian type. In the general case, gauge fields
and parameters now depend on infinitely many parameters, since the enveloping algebra on
Groenewold-Moyal space is infinite dimensional. In order to emphasize this fact, we denote
such algebras by U?(N), O?(N), USp?(2N), . . . , i.e. with subscript “?”. But nevertheless
the parameters can be reduced to a finite number, namely the classical parameters, by the
so-called Seiberg-Witten maps which we will discuss in Section 2.4.

Let us for now consider U?(N) gauge fields Aµ(x) = Aaµ(x)T a on non-commutative RD,

i.e. let T a be generators of U(N) with trN (T aT b) = δab, a, b = 1, . . . , N2, and
[
T a, T b

]
=

ifabcT c. We may then write a non-commutative version of the Yang-Mills action as

SYM =
1

4
Tr⊗ trN

([
∂̂µ, Ŵ[A]ν

]
−
[
∂̂ν , Ŵ[A]µ

]
− ig

[
Ŵ[A]µ, Ŵ[A]ν

])2

=
1

4

∫
dDx trN (Fµν(x) ? Fµν(x)) ,

Fµν = ∂µAν − ∂νAµ − ig [Aµ ?, Aν ] . (2.41)

Note, that the star commutator term in the field strength is present even in the special case
of N = 1, i.e. U?(1) gauge fields are non-Abelian. The action above is invariant under the
gauge transformations

Ŵ[A]µ → Ŵ[u]Ŵ[Aµ]Ŵ[u]† − i

g
Ŵ[u]

[
∂̂µ, Ŵ[u]†

]
,

Ŵ[u]Ŵ[u]† = Ŵ[u]†Ŵ[u] = 1⊗ 1N , (2.42)

where Ŵ[u] are unitary elements of the C∗-algebra of matrix-valued Weyl operators. This
implies the star gauge transformations

Aµ(x)→ u(x) ? Aµ(x) ? u(x)† − i

g
u(x) ? ∂µu(x)† ,

Fµν(x)→ u(x) ? Fµν(x) ? u(x)† ,

u(x) ? u(x)† = u(x)† ? u(x) = 1N , (2.43)

where u(x) is star unitary. Notice, that the field strength Fµν transforms covariantly even
in the U?(1) case due to the star product. Considering u(x) = exp (−igαa(x)T a) we find
the according infinitesimal gauge transformations

δαAµ(x) = Dµα(x) = ∂µA(x)− ig [Aµ(x) ?, α(x)] ,

δαFµν(x) = −ig [Fµν(x) ?, α(x)] ,

Aµ(x) = Aaµ(x)T a , α(x) = αa(x)T a , Fµν = F aµν(x)T a , (2.44)

where formula (2.40) needs to be applied to the star commutators.

U?(1) gauge fields.
Let us restrict ourselves to the case N = 1 for simplicity. Being non-Abelian, the U?(1)
group has “effective” structure constants which can easily be read off using Eqn. (2.16),
namely in momentum space they are given by momentum dependent functions

f(k, p, q) = 2 sin (kµθ
µνpν) (2π)DδD(p+ q + k) . (2.45)
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The effective symmetric tensors d(p, q, k) take the same form with sin replaced by cos.
Adapting the Faddeev-Popov technique to the non-commutative case and choosing a covari-
ant gauge fixing, one finds the following gauge field action in θ-deformed R4

S =

∫
d4x

(
1

4
Fµν ? F

µν + s
(
c̄ ? ∂µAµ + ξ

2 c̄ ? b
))

=

∫
d4x

(
1

4
Fµν ? F

µν + b ? ∂µAµ + ξ
2b ? b− c̄ ? ∂

µDµc

)
, (2.46)

with the BRST transformations

sAµ = ∂µc− ig [Aµ ?, c] = Dµc , sc = igc ? c ,

sc̄ = b , sb = 0 ,

s2φ = 0 , ∀φ . (2.47)

The propagators of this model in momentum space are given by

GAAµν (k) =
1

k2

(
δµν − (1− ξ)kµkν

k2

)
, Gcc̄(k) = − 1

k2
, (2.48)

i.e. they are the same as in the according model in commutative Euclidean space. The
vertices, however, are changed due to the star product: In contrast to the commutative
case, one has interactions between the gauge fields and the ghosts even in the U?(1) case
due to the effective structure constants f(k, p, q), d(k, p, q) — see Eqn. (2.45). The vertices
of the present model read

k2,σ

k1,ρ

k3,τ

= Ṽ 3A
ρστ (k1, k2, k3)

= 2ig(2π)4δ4(k1 + k2 + k3) sin
(
k1k̃2

2

)
×

× [(k3 − k2)ρδστ + (k1 − k3)σδρτ + (k2 − k1)τδρσ] , (2.49a)

k4,ε

k3,τ

k2,σ

k1,ρ
= Ṽ 4A

ρστε(k1, k2, k3, k4)

= −4g2(2π)4δ4(k1 + k2 + k3 + k4)×

×
[
(δρτδσε − δρεδστ ) sin

(
k1k̃2

2

)
sin
(
k3k̃4

2

)
+(δρσδτε − δρεδστ ) sin

(
k1k̃3

2

)
sin
(
k2k̃4

2

)
+(δρσδτε − δρτδσε) sin

(
k2k̃3

2

)
sin
(
k1k̃4

2

)]
, (2.49b)

k2,µ

q1

q3

= Ṽ c̄Ac
µ (q1, k2, q3)

= −2ig(2π)4δ4(q1 + k2 + q3)q1µ sin
(
q1q̃3

2

)
, (2.49c)

where q̃µ := θµνqν . Similar to the scalar model (2.21), new infrared divergences appear in
loop calculations due to UV/IR mixing rendering the action (2.46) non-renormalizable. At
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one loop level, the leading IR divergent terms read

ΠIR
µν(p) ∝ p̃µp̃ν

(p̃2)2
, (2.50a)

Γ3A,IR
µνρ (p1, p2, p3) ∝ cos

(
p1p̃2

2

) ∑
i=1,2,3

p̃i,µp̃i,ν p̃i,ρ
(p̃2
i )

2
. (2.50b)

Notice, that due to pµp̃
µ = pµθ

µνpν = 0 one has pµΠIR
µν(p) = 0 which is consistent with

the Ward identity pµΠµν = 0 following from gauge invariance. In order to repair renor-
malizability of the gauge model, one can try to add appropriate additional terms to the
action in analogy to the scalar case. However, due to gauge symmetry, this task is not
straightforward. Although several ideas in this direction exist today, a rigorous proof of
renormalizability is still missing.

Covariant coordinates and induced gauge theory.
Let us reconsider a scalar field φ which transforms covariantly under a star gauge transfor-
mation u(x) as in Eqn. (2.43), i.e.

φ(x)→ u(x) ? φ(x) ? u(x)† . (2.51)

In contrast to commutative spaces, xµ ? φ(x) does not transform covariantly due to the star
product. We can, however, introduce new “covariant” coordinates

X̃µ := x̃µ + gAµ , x̃µ := θ−1
µν x

ν , (2.52)

where Aµ once more denotes a gauge field with transformation properties (2.43) in order to
restore this property. It hence follows that

X̃µ → u(x) ? X̃µ ? u(x)† ,

X̃µφ(x)→ u(x) ? X̃µφ(x) ? u(x)† . (2.53)

under star gauge transformations. This has some interesting consequences: For one, the
scalar GW-model can be straightforwardly generalized to

S =

∫
d4x

(
1

2
φ ?
[
X̃µ

?,
[
X̃µ ?, φ

]]
+
m2

2
φ ? φ+

Ω2

2
φ ?
{
X̃µ ?,

{
X̃µ

?, φ
}}

+
λ

4!
φ ? φ ? φ ? φ

)
,

(2.54)

and the scalar field φ hence coupled to an external gauge field Aµ.
Furthermore, observe that the gauge field strength Fµν may be written in terms of the

covariant coordinates as a commutator

i
[
X̃µ

?, X̃ν

]
= θ−1 − gFµν . (2.55)

Since we consider θµν to be constant in this section, we may replace∫
d4xFµν ? F

µν → − 1

g2

∫
d4x

[
X̃µ

?, X̃ν

]
?
[
X̃µ ?, X̃ν

]
, (2.56)

without changing the e.o.m. derived from the action.
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Exercise 4 Verify this claim!

As in the GW case, the action (2.54) is reminiscent of a matrix model. In fact, it is
believed by some authors that matrix models may provide a unified description of scalar,
gauge and even fermion fields coupled to gravity. In that context, gravity is an emergent
effect and the reason for UV/IR mixing — see Section 3.6 for a brief introduction.

2.4 Expanding for small θ — the Seiberg-Witten map

As one generally assumes the commutator θµν to be very small (as mentioned in the intro-
duction perhaps even of the order of the Planck length squared), it certainly makes sense to
also consider an expansion of a non-commutative theory in terms of that parameter. The
star product can be written as an expansion in a formal parameter θ,

f ? g = f · g +
∞∑
n=1

θnCn(f, g) . (2.57)

In the commutative limit θ → 0, the star product reduces to the pointwise product of
functions. One may ask, if there is a similar commutative limit for the fields. The answer
is given by the so-called Seiberg-Witten map, named after its inventors N. Seiberg and E.
Witten (1999). In the simplest case it maps a non-commutative U(1) gauge field Aµ to a
commuting U(1) Maxwell field aµ. The existence of such a map may be motivated by the
fact that a certain limit of string theory with D-branes and a B-field, can lead either to a
commutative or a non-commutative effective field theory depending on the regularization
scheme used. Seiberg and Witten argued that consequently there must be a local map from
ordinary gauge theory to non-commutative gauge theory satisfying

Aµ[a] + δΛAµ[a] = Aµ[a+ δλa] , (2.58)

where δλ denotes an ordinary gauge transformation and δΛ a non-commutative one. The
Seiberg-Witten (SW) maps are solutions of this so-called “gauge-equivalence relation”.
Eqn. (2.58) means that doing a gauge transformation of the non-commutative gauge field
A with non-commutative gauge parameter Λ is equivalent to a gauge transformation of
the commuting field a with commuting gauge parameter λ. The solutions are, however,
not unique: there are some ambiguities. In fact, any Seiberg-Witten map can be obtained
as the composition of a fixed SW-map and a map preserving the gauge structure of the
commutative theory.

In this framework the deformation parameter θµν plays the role of a constant, unquantized
and external field. In this way, a θ-expanded deformed non-commutative Maxwell theory
can be obtained where the photon receives a self-interaction via the background field θµν .

The solution to this question for Abelian gauge groups, as given by Seiberg and Witten,
reads

Aµ[a] = aµ +
gθστ

2
(aτ∂σaµ + fσµaτ ) +O(θ2) ,

Φ[φ, a] = φ+
gθµν

2
aν∂µφ+O(θ2) ,

Λ[λ, a] = λ+
gθµν

2
aν∂µλ+O(θ2) , (2.59)
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where fµν is the field strength tensor associated to aµ and Φ/φ denote scalar fields. Gener-
alizing to non-Abelian gauge fields aµ on the commutative side, we start by expanding Λ in
terms of θ,

Λ[A] = Λ0 + Λ1[a] + Λ2[a] +O(θ3) , (2.60)

where Λn is O(θn). Solving order by order, we arrive at

0th order : Λ0 = λ ,

1st order : Λ1 =
gθµν

4
{∂µλ, aν} . (2.61)

For scalar fields Φ the condition

δλΦ[a] = δΛΦ[a] = igΛ[a] ? Φ[a] (2.62)

has to be satisfied. In other words, the ordinary gauge transformation induces a non-commu-
tative gauge transformation. We expand the fields in terms of the non-commutativity

Φ = Φ0 + Φ1[a] + Φ2[a] + . . . , (2.63)

and solve Eqn. (2.62) order by order in θ. In first order, we have to find a solution to

δλΦ1[a] = igλΦ1 + igΛ1φ− gθµν

2
∂µλ∂νφ . (2.64)

It is given by

0th order : Φ0 = φ ,

1st order : Φ1 = −gθ
µν

2
aµ∂νφ+

igθµν

4
aµaνφ . (2.65)

The gauge fields Aµ have to satisfy

δλAµ[a] = ∂µΛ[a]− ig [Λµ[a] ?, Λ[a]] , (2.66)

(cf. the gauge equivalence relation Eqn. (2.58)). Using the expansion

Aµ[a] = A0
µ +A1

µ[a] +A2
µ[a] + . . . , (2.67)

and solving (2.66) order by order, we end up with

0th order : A0
µ = aµ ,

1st order : A1
µ = −gθ

τν

4
{aτ , ∂νaµ + fνµ} , (2.68)

where fνµ = ∂νaµ − ∂µaν − ig [aν , aµ]. Similarly, we have for the field strength Fµν

δλFµν = ig [Λ, Fµν ]

and Fµν = fµν +
gθστ

2
{fµσ, fντ} −

g

4
θστ {aσ, (∂τ +Dτ )fµν} , (2.69)

where Dµfτν = ∂µfτν − ig [aµ, fτν ].
It should be pointed out that gauge field theories formulated via the Seiberg-Witten map

are manifestly IR finite in the sense of UV/IR mixing. Only the usual UV divergences are
present.
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Exercise 5 Explicitly compute the Seiberg-Witten map to first order in θ, first for Abelian
aµ verifying (2.59), then generalize the results for non-Abelian aµ and verify (2.61), (2.65)
and (2.68)!

The U?(1) gauge field action (2.46) in terms of the Seiberg-Witten expansion reads

Sinv =

∫
d4x

(
1

4
fµνf

µν − g

8
θαβfαβfµνf

µν +
g

2
θαβfµαfνβf

µν +O(θ2)

)
, (2.70)

which is invariant under the usual Abelian gauge transformation δλ. Concerning the gauge
fixing and ghost sector, there seem to be two fundamentally different ways of introducing
ghosts into the theory: before or after performing the Seiberg-Witten map. While the latter
with Landau gauge fixing leads to the usual terms

Sgf =

∫
d4xs

(
c̄∂µa

µ +
ξ

2
c̄b

)
, (2.71)

with the BRST transformations

saµ = ∂µc , sc = 0 , sc̄ = b , sb = 0 , (2.72)

performing the SW-map after introducing ghosts into the action according to (2.46), leads
to

Sgf =

∫
d4x

(
b(∂a)− c̄�c− gθαβ

(
∂µc̄∂αc∂βaµ −

1

2
�c̄aα∂βc−

1

2
∂µbaα(∂βaµ + fβµ)

))
,

(2.73)

due to the SW-expansion7 of the non-commutative fields ĉ, ˆ̄c, b̂:

ĉ = c+
g

2
θµνaν∂µc+O(θ2) , ˆ̄c = c̄ , b̂ = b . (2.74)

Once more, the action (2.73) is invariant under the BRST transformations (2.72).
Although the pure gauge sector (2.70) is renormalizable, Seiberg-Witten expanded theo-

ries become non-renormalizable if one also adds fermions to the pure gauge sector as was
proven by R. Wulkenhaar in 2001. Nevertheless, such theories may be studied as describing
non-commutative corrections to commutative models, i.e. they are regarded as effective
theories.

In particular, one may study a non-commutative version of the standard model of particle
physics in terms of a Seiberg-Witten expansion. This gives rise to new couplings and decay
modes, which might be forbidden or highly suppressed in the commutative Standard Model.
For example, there is a new coupling of photons to neutral particles, and the decay Z → γγ.
By studying such processes one can obtain bounds on the non-commutativity scale. The SW
map has also been applied to astrophysical scenarios, e.g. bounds for the non-commutative
scale can be derived from estimates for the induced energy loss in stars and from comparison
of Dirac/Majorana neutrino dipole moments. Furthermore, also big bang nucleosynthesis
may be used in order to constrain the scale of non-commutative effects.

Finally, it should be mentioned, that Seiberg-Witten maps can also be constructed for
non-constant θµν . In particular, this has been done for κ-deformed spaces (which we will
introduce in Section 3.4) and for certain classes of q-deformed spaces (which are introduced
in Section 3.5).

7Note, that we merely need to substitute Λ → ĉ, λ→ c in (2.59).
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2.5 Physical applications: the Quantum Hall effect

2.5.1 Non-commutative Chern-Simons theory

We have mentioned in the introduction, that the quantum Hall effect may be described by a
non-commutative version of the Chern-Simons (CS) action. In order to make the connection,
we start by introducing the CS model on θ-deformed space:

As in the previous sections, we may generalize the action of Chern-Simons theory using
Weyl operators. Remember that CS-theory is defined in 3 dimensions8, and in the non-
commutative case reads

SCS = −1

2
Tr⊗ trN ε

µνρ

(
Ŵ[A]µ

[
∂̂ν , Ŵ[A]ρ

]
− 2ig

3
Ŵ[A]µŴ[A]νŴ[A]ρ

)
= −1

2
trN

∫
d3x εµνρ

(
Aµ ? ∂νAρ −

2ig

3
Aµ ? Aν ? Aρ

)
. (2.75)

It is independent of the metric and therefore a topological model. The CS action is invariant
under the gauge transformations δλAµ = Dµλ. Furthermore, the equations of motion tell
us that

εµνρFνρ = 0 , with Fνρ = ∂νAρ − ∂ρAν − ig [Aν ?, Aρ] , (2.76)

from which it follows that the field strength should vanish, i.e. Fµν = 0.
As in the Yang-Mills case, the gauge symmetry needs to be fixed, and for this purpose we

choose a Landau gauge fixing (ξ = 0 in our previous notation), i.e.

Sgf = s

∫
d3x trN (c̄ ? ∂µA

µ) =

∫
d3x trN (b ? ∂µA

µ − c̄ ? ∂µDµc) . (2.77)

The complete action SCS + Sgf is invariant under the BRST transformations (2.47) — but
due to Sgf depends on the metric, which for now we choose to be Euclidean.

It turns out, that with such a Landau gauge fixing the complete action exhibits an addi-
tional symmetry which is characterized by the transformations

δνAρ = εµνρ∂
µc̄ , δνc = −Aν ,

δνb = −∂ν c̄ , δν c̄ = 0 . (2.78)

For obvious reasons it is called the “linear vector supersymmetry”. In some sense, it may
be viewed as an “inverse” of the BRST transformations. Both symmetries together form an
algebra which closes on-shell on space-time translations:

{s, s} = 0 , {δµ, δν} = 0 ,

{δµ, s} = −∂µ + e.o.m. (2.79)

Exercise 6 Check invariance of the gauge fixed Chern-Simons action under the transfor-
mations (2.47) and (2.78), as well as the algebra (2.79)!

In general, topological theories do not exhibit propagating degrees of freedom. This
means, there should be no loop corrections to the propagators. It may perhaps not be clear
that this should hold also in non-commutative space, but explicit one-loop calculations in
fact confirm this claim.

8We restrict ourselves to flat space in this section.
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2.5.2 Fuzzy fluids

Our aim is to describe the quantum Hall effect, and since we are going to describe the
electrons in terms of a fluid, we need to discuss some related properties.

There are basically two equivalent descriptions of fluids:

1. In terms of the coordinates Xi(x, t) (with i = 1, 2) of the particles comprising the fluid
in the Lagrange description, where the xi “labeling” the particles are called co-moving
coordinates,

2. and in terms of density ρ(r, t) and velocity fields vi(r, t) at each point in space ri in
the Euler description.

In order to make contact with the quantum Hall effect, we work in two spacial dimensions,
and note that in the Lagrange description all fluid quantities must be invariant under particle
relabelling if the density ρ0 stays invariant. In the present case, this symmetry corresponds
to area-preserving diffeomorphisms of the variables xi. Infinitesimal transformations may
be written as

δxi = εij
∂f(x)

∂xj
, (2.80)

for which the area preserving condition det
(
∂xi+δxi

∂xj

)
= 1 ⇔ ∂δxi

∂xj
= 0 is obviously fulfilled.

Introducing Poisson brackets {xi, xj}PB = θεij with some constant θ, we can rewrite (2.80)
as δxi = {xi, f}PB and hence in terms of the fundamental Lagrange fluid variables as

δXi = ∂jX
iδxj = {Xi, f(x)}PB . (2.81)

This looks like the classical approximation of a gauge transformation of the covariant non-
commutative coordinates Xi of Eqn. (2.52) in Section 2.3. The analogy becomes even more
striking upon introducing a function Ai(x, t) measuring the deviation Xi − xi, i.e.

Xi = xi +Ai(x, t) = xi + θεijAj(x, t) . (2.82)

This “gauge field” Ai transforms as δAi = ∂if + {Ai, f}PB. The “duals” of the Xi, denoted
by X̃i = 1

θ εijX
j = x̃i+Ai obviously correspond to covariant derivatives leading to the “field

strength”

F̂ij = {X̃i, X̃j}PB =
1

θ
εij + Fij ,

Fij = ∂iAj − ∂jAi + {Ai, Aj}PB . (2.83)

The fluid density ρ in this notation computes to

ρ(r, t) = ρ0

∫
dx δ(X(x, t)− r) ,

⇒ ρ0

ρ
= det

(
∂Xi(x, t)

∂xj

)
=

1

θ
{X1, X2}PB , (2.84)

leading to the relation

F̂ij =
ρ0

ρ
εij , (2.85)
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i.e. the field strength (which in 2-dimensional space has only one non-vanishing component)
is related to the fluid density.

So far, we have only considered time-independent gauge transformations. In order to
include time-dependent transformations, one has to introduce a temporal gauge field A0

which transforms as

δA0 = ḟ + {A0, f}PB , (2.86)

where f(x, t) is now time-dependent. More precisely, in order to render time-derivatives
Ẋ(x, t) covariant with respect to gauge transformations, we must replace them by covariant
time-derivatives

D0X
i = Ẋi + {A0, X

i}PB , (2.87)

in the Lagrangian. As this would change the dynamics of the system, a temporal gauge
fixing A0 = 0 is required.

The transition to non-commutative fluids (“fuzzy fluids”) is achieved the same way as the
transition from classical to quantum mechanics, i.e. by replacing the Poisson brackets with
commutators:

{·, ·}PB → −i [·, ·] ,
[
xi, xj

]
= iθεij , (2.88)

so that the co-moving coordinates are promoted to a non-commutative plane for which we
may consider Weyl quantization as discussed in Section 2.1. This then obviously leads to a
non-commutative gauge theory (with commuting time). In choosing 2πθ = 1/ρ0, summation
over the particles becomes the trace over the representation space, i.e.∑

particles

= ρ0

∫
dx→ 2πθρ0Tr = Tr . (2.89)

Note, that the fluid density ρ(r, t) is still an ordinary function, as can be seen from the
non-commutative version of (2.84), i.e.

ρ(r, t) = Trδ(X(x, t)− r) . (2.90)

The same is true for the particle current

ji = ρvi = ρ0

∫
dxẊiδ(X − r) , (2.91)

where vi is the Euler velocity. Density and current still satisfy the continuity equation, which
means that our fuzzy fluid still has an Euler description in terms of ordinary commuting
particle density and current. Hence, a Seiberg-Witten map must exist between the two
descriptions. More precisely, since in 2+1 dimensions the conserved current can be written
in terms of its dual two-form Jµν = εµνρj

ρ with j0 = ρ, which then satisfies the Bianchi
identity, this J can be considered as an Abelian field strength allowing the definition of an
Abelian commutative gauge field aµ.
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2.5.3 Quantum Hall fluid as non-commutative Chern-Simons model

In Section 1.2 we have discussed the Landau problem and its relation to the quantum Hall
effect. We have seen, that projection onto the lowest Landau level (i.e. neglecting the kinetic
term for large magnetic field) leads to non-commutative space coordinates in the plane
perpendicular to the magnetic field. We now consider a large number N of electrons on the
plane in the lowest Landau level. Comparing (1.11) with (2.88) exhibits the identification
θ = 1/(eB).

The according action including the temporal gauge field A0 to make it gauge invariant
reads

S =

∫
dt
eB

2
Tr
(
εijD0X

iXj + 2θA0

)
=

∫
dt
eB

2
Tr
(
εij
(
Ẋi − i

[
A0, X

i
] )
Xj + 2θA0

)
, (2.92)

where the last term had to be added so that the e.o.m. for A0 leads to the constraint[
X1, X2

]
= iθ . (2.93)

rather than zero. Furthermore, we introduce the filling fraction ν as the fraction

ν =
ρ0

ρLLL
=

1

θeB
, (2.94)

where ρLLL = eB/(2π) is the lowest Landau level density and ρ0 was defined by (2.89)
above. Notice, that the action (2.92) is nothing else than the Chern-Simons action in 2+1
dimensions (with commuting time).

Exercise 7 Show that the action (2.92) may be written in a form similar to (2.75) upon
inserting (2.82) and using (2.88)!

2.6 The fuzzy torus

A further interesting case to study is the replacement of the flat D-dimensional Groenewold-
Moyal space by a D-dimensional “fuzzy” torus TDθ . This requires only some small changes
compared to the situation in Section 2.1, e.g. one needs to impose a periodicity condition
such as

xµ ∼ xµ + Σµ
a , a = 1, . . . , D . (2.95)

When Σµ
a is not proportional to δµa , one has a tilted torus. This periodicity implies that the

corresponding Fourier momenta are quantized according to

kµ = 2π(Σ−1)aµna , (2.96)

with na ∈ Z. Furthermore, one considers a Weyl basis of unitary operators

Ẑa = e2πi(Σ−1)aµx̂
µ
. (2.97)

26



These then generate the algebra

ẐaẐb = e−2πiΘabẐbẐa ,

Θab := 2π(Σ−1)aµθ
µν(Σ−1)bν , (2.98)

which replaces (2.1). Functions of TDθ can be Fourier expanded as

f(x) =
∑
~m∈ZD

f~me
2πi(Σ−1)aµmax

µ
, (2.99)

and Weyl quantization takes the form

Ŵ[f ] :=

∫
dDx f(x)∆̂(x) ,

∆̂(x) =
1

det Σ

∑
~m∈ZD

D∏
a=1

(Ẑa)ma
∏
a<b

e−πimaΘabmbe−2πi(Σ−1)aµmax
µ
. (2.100)

Note that ∆̂(x) shares the periodicity property (2.95). Finally, we may define a derivation
on the non-commutative torus as[

∂̂µ, Ẑ
a
]

= 2πi(Σ−1)aµẐ
a , (2.101)

leading to the property [
∂̂µ, ∆̂(x)

]
= −∂µ∆̂(x) , (2.102)

(cp. (2.6)).

2.7 Time ordering in non-commutative QFTs

Throughout the previous sections we have either considered Euclidean spaces, or kept time
commutative, i.e. θ0µ = 0. The difficulty with handling θ0µ 6= 0 lies in the fact that, due
to the star products, the interaction part of the Lagrangian depends on infinitely many
time derivatives acting on the fields. Furthermore, unitarity of the S matrix appears to be
violated when time-ordering is not adapted to the non-commutative setting. In order to
pin down the problem, let us briefly review the definition of the S matrix in commutative
space-time. It is given by

S = T exp

(
i

∫
d4xLint(x)

)
, (2.103)

where T is the time ordering operator, Lint denotes the interaction part of the Lagrangian,
and the S matrix is unitary by construction. If we consider a scalar field theory with an
interaction of type L(x) = −φin(x)j(x) where φin denotes an incoming free scalar field and
j(x) is some external source, the expression (2.103) may be rewritten as

S = exp

(
−i

∫
d4xφin(x)j(x)

)
exp

(
− i

2

∫
d4xd4x′j(x)Gret(x− x′)j(x′)

)
, (2.104)
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where Gret(x − x′) is the (retarded) propagator. Obviously, the S-matrix as defined above
is unitary by definition if the correct time-ordering is chosen. Hence, any non-unitary result
can only mean, that the näıve approach to time-ordering in the non-commutative setting is
wrong.

A possible solution has been proposed by S. Doplicher et al. (1994) and further developed
for non-commutative scalar φ4 theory by several authors. It is termed “interaction point
time ordered perturbation theory” (IPTOPT) and is based on the following idea: Consider
the Gell-Mann–Low formula applied to the field operators φ of a scalar φ4 theory

〈0|T{φH(x1) . . . φH(xn)}|0〉 =

∞∑
m=0

(−i)m

m!

∞∫
−∞

dt1

∞∫
−∞

dt2 . . .

∞∫
−∞

dtm×

× 〈0|T{φI(x1) . . . φI(xn)V (t1) . . . V (tm)}|0〉 . (2.105)

The subscripts H and I denote the Heisenberg picture and the interaction picture, respec-
tively. V is the interaction part of the Hamiltonian

V (z0) =

∫
d3z

λ

4!
φ(z) ? φ(z) ? φ(z) ? φ(z) . (2.106)

The idea is that the time-ordering operator T acts on the time components of the xi and on
the so-called time stamps t1, . . . , tm. For example, considering the interaction (2.106) with
an alternative representation — cf. (2.14) — for the star products

V (z0) =
λ

4!

3∏
i=1

∫
d4sid

4li
(2π)4

eisiliφ(z− θ
2 l1)φ(z+s1− θ

2 l2)φ(z+s1+s2− θ
2 l3)φ(z+s1+s2+s3) ,

(2.107)

the time ordering only affects z0 and no other time components (like e.g. l0i etc.). From the
expression above, one furthermore notices that the interaction in non-commutative spaces
is “smeared out”, i.e. it is not located at one specific point in space-time as illustrated in
Figure 2.1.

Figure 2.1: Vertices in non-commutative φ?4 theory (and others) are not located at one
space-time point, but “smeared” over a region whose size is determined by θ.

This leads to modified Feynman rules, i.e. the propagator, being the time-ordered product
of two fields in the tree approximation, is modified since time-ordering is modified. For
example, the propagator of φ4 theory

G(x, x′) =

∫
d4k

(2π)4

eik(x−x′)

k2 +m2 − iε
, (2.108)
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is generalized to the so-called contractor

GC(x, t;x′, t′) =

∫
d4k

(2π)4

exp
[
ik(x− x′) + ik0(x0 − t− (x′0 − t′))

]
k2 +m2 − iε

×

×
[
cos
(
ωk(x

0−t− (x′0−t′))
)
− ik0

ωk
sin
(
ωk(x

0−t− (x′0−t′))
)]
, (2.109)

which for x0 = t and x′0 = t′ (being the case when θ0µ = 0) reduces to (2.108). It is computed
by replacing Θ(x0 − x′0) with Θ(t− t′) in the expression for the Feynman propagator, i.e.

GF (x, x′) = Θ(x0 − x′0)
[
φ+(x), φ−(x′)

]
+ Θ(x′0 − x0)

[
φ+(x′), φ−(x)

]
, (2.110)

becomes

GC(x, x′) = Θ(t− t′)
[
φ+(x), φ−(x′)

]
+ Θ(t′ − t)

[
φ+(x′), φ−(x)

]
, (2.111)

which then leads to (2.109).

Exercise 8 Verify the expression for the contractor of φ?4 theory (2.109) by explicit com-
putation! Remember that

[
φ+(x), φ−(x′)

]
=

∫
d3p

2ωp(2π)3
ep(x−x

′)|p0=ωp ,

and use an appropriate integral representation for the step function θ.

Due to these generalizations, perturbation theory becomes somewhat more involved than
in the commutative case. Furthermore, many open questions (e.g. concerning renormaliz-
ability, UV/IR mixing, etc.) remain.
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3 Non-canonical deformations

In the previous sections, we have thoroughly discussed gauge theories formulated on non-
commutative spaces with constant θµν , i.e. Groenewold-Moyal spaces. The following shall
therefore give a brief overview over other approaches, such as x-dependent θµν . The topics
we will cover are twisted gauge theories, after which we will proceed to the case of linear
dependence on x, i.e. fuzzy and κ-deformed spaces, and finally review approaches with the
most general x dependence of the commutator, such as quantum groups and matrix models.

3.1 Hopf algebras

In the following sections, techniques known from Hopf algebras will be needed, and we
therefore review their basic properties:

A Hopf algebra (named after Heinz Hopf) A, denoted by (A,m, η,∆, ε, S), consists of an
associative algebra (A,m, η) with a compatible co-algebra structure, given by the structure
maps ∆, ε and S. In detail, m : A⊗A → A denotes the multiplication and η the unit map
η : C→ A , c 7→ c1A , where 1A ∈ A is the unit element. The multiplication is associative.
The structure maps of the co-algebra are by definition dual to m and η:

∆ : A −→ A⊗A , ε : A −→ C . (3.1)

The co-product ∆ satisfies the co-associativity rule

(1⊗∆) ◦∆ = (∆⊗ 1) ◦∆ , (3.2)

and for the co-unit ε we have a similar defining relation

(ε⊗ 1) ◦∆ = (1⊗ ε) ◦∆ . (3.3)

The antipode (“inverse”) S is defined via the relation

m ◦ (S ⊗ 1) ◦∆ = η ◦ ε = m ◦ (1⊗ S) ◦∆ . (3.4)

Compatibility between algebra and co-algebra structures means that the co-product ∆ and
the co-unit ε are algebra homomorphisms, i.e.

∆(ab) = ∆(a)∆(b) , ε(ab) = ε(a)ε(b) , (3.5)

with a, b ∈ A.
Finally, note that the following diagram commutes:

A⊗A S⊗1 // A⊗A
m

��
A

∆

AA

∆
��

ε // C
η // A

A⊗A
1⊗S

// A⊗A

m

AA
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3.2 Twisted gauge theories

In the so-called “twisted approach”, the main idea is to also deform the Leibniz rule (in
addition to the pointwise product) by using Hopf algebra techniques (see Section 3.1).
Following J. Wess et al., consider first the undeformed (i.e. commutative) case: We define
a pointwise product as

m{f ⊗ g} = f · g , (3.6)

and the infinitesimal gauge transformation of a scalar field φ as

δαφ(x) = iα(x)φ(x) , (3.7)

where α(x) is Lie algebra valued (see Section 2.3). The co-multiplication ∆(α), an essential
ingredient for a Hopf algebra, is defined by

∆(α) = α⊗ 1+ 1⊗ α , (3.8)

and allows us to write the Leibniz rule for the gauge transformation of a product of fields
in the language of Hopf algebras as

δα(φ1 · φ2) = (δαφ1)φ2 + φ1(δαφ2)

= m{∆(α)φ1 ⊗ φ2} . (3.9)

In the deformed case, on the other hand, one has to replace the pointwise product (3.6) with
a deformed version, which in the simplest case could be the Groenewold-Moyal product of
Section 2.1, i.e. in the Hopf algebra language

m?{f ⊗ g} = m{e
i
2
θµν∂µ⊗∂νf ⊗ g} . (3.10)

The non-commutative gauge transformation δ?α on a single field is defined as

δ?αφ = iα · φ , (3.11)

as in the commutative case. Furthermore, one considers a deformed — or “twisted” —
co-product

∆F (α) = F(α⊗ 1+ 1⊗ α)F−1 ,

F = e−
i
2
θµν∂µ⊗∂ν , (3.12)

where F denotes a “twist operator” that has all the properties to define a Hopf algebra with
(3.12) as a co-multiplication. Hence, we may write a Groenewold-Moyal deformed version
of the Leibniz rule (3.9) as

δ?α(φ1 ? φ2) = im?{∆F (δ?α)φ1 ⊗ φ2}
= i(αφ1) ? φ2 + iφ1 ? (αφ2)

+ i

∞∑
k=1

1
k!

(−i
2

)k
θµ1ν1 . . . θµkνk

[
(∂µ1 . . . ∂µkα)φ1 ? (∂ν1 . . . ∂νkφ2)

+ (∂µ1 . . . ∂µkφ1) ? (∂ν1 . . . ∂νkα)φ2

]
. (3.13)
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Of course, this formalism can be readily used to include gauge fields as well. As usual, the
field strength is given by

Fµν = ∂µAν − ∂νAµ − ig [Aµ ?, Aν ] , (3.14)

which transforms covariantly as δ?αFµν = ig [α, Fµν ]. For the Groenewold-Moyal case, the
action reads

S = −1

4

∫
d4xFµν ? F

µν . (3.15)

There is a remarkable difference to the non-twisted approach: Starting with a Lie algebra
valued connection, twisted gauge transformations close in the Lie algebra. However, the
consistency of the equations of motion of (3.15) require the introduction of additional new
vector potentials. The number of the new degrees of freedom is representation dependent,
but remains finite for finite dimensional representations.

To summarize, the main idea of this approach is to extend symmetry transformations,
(co-)products, etc. by twists F in a consistent way. This approach can be generalized to
x-dependent star products if these products can be expressed in terms of a twist F as

(f ? g)(x) = m(F−1f ⊗ g) . (3.16)

3.3 The fuzzy sphere

The fuzzy sphere has been introduced by J. Madore (1990). Its generators satisfy linear
commutation relations

[x̂i, x̂j ] = i
θ

r
εijkx̂k , i, j, k ∈ {1, 2, 3} , (3.17)

where r21 = (x̂2
1 + x̂2

2 + x̂2
3) and r ∈ R is the radius of the sphere. The objects R̂i = r

θ x̂i
obviously satisfy the SU(2) algebra relations. We may choose an irreducible representation
with spin j, so that the generators R̂i as well as x̂i are N × N matrices with N = 2j + 1.
The parameter θ is fixed by the quadratic Casimir relation

θ =
r2√

j(j + 1)
. (3.18)

It is related to the elementary area on the sphere, which becomes obvious after a rescaling

θ′ =
r2

j + 1
2

=
4πr2

2πN
. (3.19)

The space algebra (3.17) is equipped with a differential calculus. Since we are dealing with
matrix algebras, all derivations are inner. The differentials ∂̂i satisfy the same algebra as
the coordinates: [

∂̂i, ∂̂j

]
=

1

r
εijk∂̂k , (3.20)

and therefore they can be represented as

∂̂i = − i

θ
x̂i . (3.21)
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The adjoint action of R̂i on a function f̂ generates rotations of x̂i, hence

L̂if̂ =
[
R̂i, f̂

]
, (3.22)

where L̂i denote the generators of angular momentum. The integral over the fuzzy sphere
is given by the trace with respect to the matrix space,∫

f̂ =
4πr2

N
Tr f̂ . (3.23)

The constant prefactor ensures the correct commutative limit, which is accomplished by
keeping r fixed and taking θ → 0 (corresponding to j →∞). The non-commutative Moyal

plane is recovered in the limit r →∞ and keeping θ fixed (corresponding to j → r2

θ ).

Gauge fields are introduced via the covariant derivatives D̂i = ∂̂i + iÂi , where Âα are
Hermitian N ×N matrices. The field strength is given by

iF̂ij =
[
D̂i, D̂j

]
−
εijk
r
D̂k , (3.24)

and gauge transformations read

D̂′i = uD̂iu
−1 , F̂ ′ij = uF̂iju

−1 , (3.25)

where u is a U(N) matrix. The restriction of the gauge field to the sphere is expressed as∑
i X̂

2
i = r2 leading to

x̂iÂi + Âix̂i − θÂ2
i = 0 , (3.26)

where covariant coordinates X̂i = iθD̂i = x̂i− θÂi are used. Hence, the action for the gauge
field is given by

S =
4πr2

N
Tr F̂ijF̂ij . (3.27)

A complex scalar field Φ̂ can be coupled to a gauge theory using the minimal coupling

S[Φ̂, Â] =
4πr2

θ2N
Tr
([
X̂i, Φ̂

] [
Φ̂, X̂i

]
+ θ2V (Φ̂)

)
. (3.28)

3.4 κ-deformed spaces

As an alternative to (3.17) one may prefer to consider a linear commutation relation that is
compatible with a deformed version of Poincaré symmetry. The most general such commu-
tation relation is given by

[x̂µ, x̂ν ] = i (aµδνσ − aνδµσ) x̂σ , (3.29)

where aµ is a constant 4-vector “pointing into the direction of non-commutativity”. Its
components also play the role of Lie algebra structure constants. In fact, a recent new
motivation for studying such κ-deformed space-times comes from “double special relativity”

33



(DSR), where in addition to the speed of light c a second invariant parameter κ of mass
dimension 1 is introduced.

Of course, in Euclidean spaces all directions are equivalent. We choose the n-direction,
i.e. aµ = κ−1δnµ, where κ is the parameter which gives its name to this approach. Now, let
us define derivatives on this κ-Euclidean space. We introduce them by finding a deformed
Leibniz rule compatible with the algebra relations (3.29), i.e.

∂̂nx̂
i = x̂i∂̂n , ∂̂nx̂

n = 1 + x̂n∂̂n ,

∂̂ix̂
j = δji + x̂j ∂̂i , ∂̂ix̂

n =

(
x̂n +

i

κ

)
∂̂i . (3.30)

Note that these relations are not unique, though. The commutator of derivatives compatible
with (3.29) is given by [∂̂µ, ∂̂ν ] = 0. The Leibniz rule for non-commutative functions reads

∂̂if̂(x̂) = (∂̂if̂(x̂)) + f̂(x̂i, x̂n + i/κ) ∂̂i , (3.31)

and the derivative ∂̂n satisfies the ordinary Leibniz rule. The co-product of the translation
generators reads

∆∂̂n = ∂̂n ⊗ 1+ 1⊗ ∂̂n , ∆∂̂i = ∂̂i ⊗ 1+ e
i
κ
∂̂n ⊗ ∂̂i . (3.32)

Let us now introduce the star product using a symmetrical ordering. Considering the “non-
commutative direction” n = 1, it is given by

(f ? g)(x) =

∫
d4k d4p f̃(k)g̃(p) ei(ωk+ωp)x1

ei~x(~ke
ωp
κ A(ωk,ωp)+~pA(ωp,ωk)) , (3.33)

where k = (ωk,~k), ~x = (x2, x3, x4), and

A(ωk, ωp) ≡
1
κ(ωk + ωp)

e
1
κ

(ωk+ωp) − 1

κ
(
e
ωk
κ − 1

)
ωk

. (3.34)

In symmetrical ordering, the action of the deformed derivatives on commutative functions
(denoted by ∂?) can be expressed in terms of the usual derivatives

∂?i f(x) = ∂i e
i
κ
∂n f(x) , ∂?nf(x) = ∂n f(x) . (3.35)

3.5 q-deformation

In this section, we want to discuss the construction of gauge theory on q-deformed spaces.
First recall the commutator relation Eqn. (1.26):[

x̂i, x̂j
]

=
(1

q
R̂ijkl − δ

i
lδ
j
k

)
x̂kx̂l . (3.36)

These spaces are representations of quantum groups, Hopf algebras which in addition possess
one additional structure: the so-called R̂-matrix. Let ûkm be the generators of the Hopf
algebra. Then the R̂-matrix deforms the multiplication in the algebra:

R̂ijklû
k
mû

l
n = ûikû

j
l R̂

kl
mn , (3.37)
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where R̂ itself is a solution of the Yang-Baxter equation, i.e. R12R23R12 = R23R12R23, with
R12

ijk
lmn := R̂ijlm δ

k
n and R23

ijk
lmn := R̂jkmn δil . This relation is also called braid equation because

it can be graphically represented by a braid. For example, the l.h.s. of the braid equation
can be depicted as (where crossings denote two u contracted by an R̂-matrix):

u u u

There exists a whole graphical apparatus to deal with the braid group. Especially, S. Majid
pushed this mathematical approach, which was also applied to gauge theory.

Quantum spaces with generators x̂i are representations of the respective quantum group.
The algebra relations of the generators are consistently given by

P−
ij
klx̂

kx̂l = 0 , (3.38)

where P− is the q-deformed antisymmetric projector, generalizing the commutator, from
the projector decomposition of the R̂-matrix of the respective quantum group. Considering
the quantum groups GLq(N) or SLq(N), we have the following decomposition

R̂ = qP+ − q−1P− , (3.39)

and in the case of SOq(N),

R̂ = qP+ − q−1P− + q1−NP0 , (3.40)

with self-explaining notation. In the commutative limit q → 1, we obtain R̂ijkl → δilδ
j
k —

cp. Eqn. (3.36). A covariant (with respect to the action of the quantum group) differential
calculus also exists and can be defined by the following relations:

P̂−
ij
kl∂̂i∂̂j = 0 , ∂̂ix̂

j = δji + q±1R̂±1jl
ikx̂

k∂̂l . (3.41)

In 2002, S. Schraml computed the Seiberg-Witten map up to first order in h := ln q, and
with respect to a normal ordered star product for a SLq(2)-symmetric quantum space, the
so-called Manin plane. The same approach was also studied by others where gauge theory
is formulated on Euclidean q-deformed 2-dimensional spaces generated by ẑ, ¯̂z with relation
ẑ ¯̂z = q2 ¯̂zẑ , which is covariant under the quantum group Eq(2). In order to formulate an
action, one uses the Hermitian star product

(f ? g)(ζ, ζ̄) = m ◦ eh(ζ∂ζ⊗ζ̄∂ζ̄−ζ̄∂ζ̄⊗ζ∂ζ) (3.42)

and the integration measure µ = 1
ζζ̄

, such that∫
dζ dζ̄ µ(f ? g)(ζ, ζ̄) =

∫
dζ dζ̄ µ(g ? f)(ζ, ζ̄) =

∫
dζ dζ̄ µg(ζ, ζ̄) · f(ζ, ζ̄) . (3.43)
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This property of the integral implies that a variational calculus can be applied, and the
gauge invariant action reads

S =

∫
dζ dζ̄ µF̂12 ? F̂12 , (3.44)

where F̂12 is the q-deformed non-Abelian field strength.
Due to the involved structure in the quantum group case, not many results are avail-

able, and the conducted work is mainly restricted to the formulation of models and to the
discussion of rather general properties. The computation of Feynman rules and explicit
perturbative (one-loop) calculations are still missing.

3.6 Yang-Mills matrix models

By considering matrix models of Yang-Mills type, a different interpretation of the origin of
the UV/IR mixing in non-commutative gauge models can be given as we will now briefly
discuss. We start with the Yang-Mills matrix model action

SYM = −Tr
[
Xa, Xb

] [
Xc, Xd

]
ηacηbd , (3.45)

where ηab denotes some D dimensional embedding space. The Xa are Hermitian matrices
acting on a Hilbert space H. In the simplest case, these matrices represent generalized
“coordinates”, and if some of them are functions of the others, in the semi-classical limit
X ∼ x one can interpret these as defining the embedding of a 2n dimensional submanifold
M2n ∈ RD equipped with a non-trivial induced metric

gµν(x) = ∂µx
a∂νx

bηab , (3.46)

via pull-back of ηab. Projectors on the tangential/normal bundle of M are defined as
PabT = gµν∂µx

a∂νx
b and PabN = ηab − PabT . The situation is illustrated in Figure 3.1.

gµν M2n

Figure 3.1: The submanifold M2n with induced metric.

This submanifold could then e.g. be our (non-commutative) 4-dimensional space-time
M4 endowed with a Poisson structure θµν ∼ −i [Xµ, Xν ]. In fact, the Poisson structure θµν

(assuming it is non-degenerate) and the induced metric gµν combine to an “effective” metric

Gµν = e−σθµρθνσgρσ , e−σ ≡

√
det θ−1

µν√
detGρσ

, (3.47)
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which is the one that is actually “felt” by matter fields. Furthermore, the matrix model
action (3.45) is invariant under the gauge symmetry Xµ → uXµu−1, where u ∈ U(∞), as
well as under global rotation and translation symmetries.

It is remarkable that within the matrix model framework four space-time dimensions, i.e.
µ, ν ∈ {0, 1, 2, 3}, play a very special role: From the definition of the effective metric (3.47)
follows, that if 2n = 4, one has detGµν = det gµν . This means that the special class of
geometries where Gµν = gµν (which incidentally corresponds to a self-dual symplectic form
θ−1
µν ) is a solution of the model. Furthermore, in the 4-dimensional case the Poisson tensor
θµν does not enter the Riemannian volume element, which turns out to stabilize flat space.

In order to make things clearer, consider a scalar field φ onM4 in the semi-classical limit
where Xa ∼ xa are mere coordinates: In order to preserve gauge invariance, the kinetic
term must have the form

S[φ] = −Tr [Xa, φ] [Xc, φ] ηac ∼
∫
d4x

√
det θ−1

µν {xa, φ}PB{xc, φ}PBηac

=

∫
d4x

√
det θ−1

µν θ
µν∂µx

a∂νφ θ
ρσ∂ρx

c∂σφ ηac

=

∫
d4x
√

detGµν G
νσ∂νφ∂σφ , (3.48)

cf. Eqn. (3.28). This semi-classical effective action obviously describes a scalar field on a
4-dimensional space-time with metric Gµν , and if Gµν = gµν it becomes independent of the
Poisson tensor θµν (in this approximation), as claimed above.

In a further step, it is also possible to add U(N) gauge fields A to the matrix model. To
show this, we start with the equations of motion of the matrix model action (3.45):[

Xa,
[
Xb, Xc

]]
ηab = 0 . (3.49)

For every solution Xc of this equation, Xc ⊗ 1N is a solution1 as well. The fluctuations Aµ
in the submanifold M4 around such a background can be parametrized by

Xa = X̄a +Aµ(X̄) , Aµ = −θµνAν(X̄) , (3.50)

where the Aµ are some U(N) valued fields2. The effective matrix model action then describes
gauge fields in a gravitational background. However, though inseparable, the U(1) and the
SU(N) subsectors play very different roles: In fact, the U(1) fields contribute only to the
gravitational sector, i.e. they represent geometrical degrees of freedom. This means, that
within the matrix model framework, non-commutative U(N) gauge field theory describes
SU(N) fields coupled to gravity.

Finally, matrix valued fermions Ψ can be added as well. For example, the IKKT model3,
whose action is given by

SIKKT = Tr
([
Xa, Xb

]
[Xa, Xb] + Ψ̄ /DΨ

)
,

/DΨ := γa [Xa,Ψ] , {γa, γb} = 2ηab , (3.51)

is supersymmetric if Majorana-Weyl spinors (Ψ = CΨ̄T ) are considered, and it is in fact
expected to be renormalizable. Hence, below the SUSY breaking scale, this model may
provide a good description of quantum gravity coupled to matter.

1One can interpret such a solution as N coinciding branes.
2Notice also the similarity to the covariant coordinates we introduced in Eqn. (2.52).
3In fact, the IKKT model was originally proposed as a non-perturbative definition of type IIB string theory.
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